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Abstract

We prove upper and lower bound for the average value over primes p of the number of
positive integers a such that the fraction a/p can be written as the sum of three unit
fractions.

An “Egyptian fraction representation” of a given rational a/n is a solution in positive
integers of the equation

a
n

= 1
m1

+ · · · 1
mk

In case k = 2 (resp. k = 3) we shall say it is a binary (resp. ternary) representation. A
variety of questions about these representations have been posed and studied. Some of
these require them to be distinct but we shall not impose such a condition here. We refer
to the book by Guy [4] for a survey on this topic and an extensive list of references.
The object of our study is the following function:

Ak (n) = #
{
a ∈ N :

a
n

= 1
m1

+ 1
m2

+ · · · + 1
mk

, m1, m2, . . . , mk ∈ N

}
.

The case of binary Egyptian fractions was considered in [2] where it was shown that
A2(n) � no(1) as n → ∞ and that

x log3 x �
∑
n≤x

A2(n) � x log3 x.

Note that some of the results in [2] were improved in [5].
The binary Egyptian fractions with prime denominators are significantly simpler. In fact

it is quite easy to show that A2(p) = 2 + τ (p + 1) where τ is the divisor function. From
this observation, it follows that∑

p≤x
A2(p) = 315ζ (3)

2π4 x + O
(

x
log x

)
as x → ∞.

Here, we consider ternary Egyptian fractions and we study the average value of A3(p) as
p ranges over primes. It is shown in [2] that A3(n) � n1/2+o(1) as n → ∞. We prove the
following theorem.

Theorem 1 We have

x(log x)3 �
∑
p≤x

A3(p) � x(log x)5 as x → ∞.
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As we shall see, the proof of the upper bound consists in estimating separately the
contribution of fractionsm/p that admit a ternary Egyptian fraction expansion:

m
p

= 1
m1

+ 1
m2

+ 1
m3

.

with p | gcd(m1, m2) and p � m3 (Type I) and the contribution of those with p | m1 and
p � m2m3 (Type II).
The fraction of Type I are proven to contribute to A3(p) with O(x log3 x) and those of

Type II withO(x log5 x). We feel that, with some care, the 5 in the latter log power should
be lowered. The proof of the above result was inspired by the paper of Elsholtz and Tao
[3] where, for a positive integer n, it is considered the number of integer solutions x, y, z
of the equation

4
n

= 1
x

+ 1
y

+ 1
z
.

1 Preliminaries
We start with a description of A3(p). Recall the following result from [1].

Lemma 1 There is a representation of the reduced fraction m/n (that is, gcd(m, n) = 1) as
m/n = 1/m1+1/m2+1/m3 if and only if there are six positive integers D1, D2, D3, v1, v2, v3
with

(i) lcm[D1, D2, D3] | n, gcd(D1, D2, D3) = 1;
(ii) v1v2v3 | D1v1 + D2v2 + D3v3, and gcd(divi, vj) = 1 for all i �= j with {i, j} ∈ {1, 2};
(iii) m | (D1v1 + D2v2 + D3v3)/(v1v2v3),

and putting E = lcm[D1, D2, D3], f1 = n/E, f2 = (D1v1 + D2v2 + D3v3)/(mv1v2v3) and
f = f1f2, we have

(m1, m2, m3) = ((E/D1)v2v3f, (E/D2)v1v3f, (E/D3)v1v2f ). (1)

Let us see the above lemma at workwhen n = p is a prime. By condition (i) of the lemma,
we first need D1, D2, D3 such that lcm[D1, D2, D3] | p. This means that lcm[D1, D2, D3] ∈
{1, p}. The case in which lcm[D1, D2, D3] = 1 leads to D1 = D2 = D3 = 1 and now
condition (ii) shows that

v1v2v3 | v1 + v2 + v3.

In particular, assuming v1 ≤ v2 ≤ v3, we get v1v2v3 ≤ 3v3, so v1v2 ≤ 3. Thus, there
are three possibilities for the pair (v1, v2) and then since v3 | v1 + v2, we infer that there
are only the following three possibilities for (D1, D2, D3, v1, v2, v3), namely (1, 1, 1, 1, 1, 1),
(1, 1, 1, 1, 1, 2) and (1, 1, 1, 1, 2, 3). Hence,m ∈ {1, 2, 3}.
Assume next that lcm[D1, D2, D3] = p. The situationD1 = D2 = D3 = p is not possible

since then the condition (D1, D2, D3) = 1 is not satisfied. Thus, not all D1, D2, D3 are
multiples of p. We then distinguish two cases.
The first case is when there exists exactly one Di for i ∈ {1, 2, 3} which equals p. Say

D1 = p. Then

v1v2v3 | pv1 + v2 + v3 and m | (pv1 + v2 + v3)/(v1v2v3).
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In this case, E = p, so E/D1 = 1, E/D2 = p and E/D3 = p. Furthermore, f1 = 1 and
f2 = (pv1 + v2 + v3)/(mp). Thus, f = f1f2 = f2. In addition, v1 | v2 + v3 and

m
p

= 1
v2v3f

+ 1
pv1v3f

+ 1
pv1v2f

.

In addition, v2 and v3 are coprime.
Assume now that there are two indices i, j ∈ {1, 2, 3} such that Di = Dj = p. Say

D2 = D3 = p. We then get that
v1v2v3 | v1 + pv2 + pv3.

Furthermore, E = p, E/D1 = p, E/D2 = 1, E/D3 = 1, f1 = 1. Moreover,m | (pv1 +pv2 +
v3)/(v1v2v3), f2 = (pv1 + pv2 + v3)/(mv1v2v3), f = f2 and

m
p

= 1
pv2v3f

+ 1
v1v3f

+ 1
v1v2f

.

If p | v1, it follows that
m
p

≤ 1
p

+ 1
p

+ 1
p

≤ 3
p
,

so again m ∈ {1, 2, 3}. Thus, suppose that p � v1. We then have from the fact that v1 |
p(v2 + v3) together with the fact that p � v1, that v1 | v2 + v3. In addition, v2 and v3 are
coprime.
To summarise, we proved the following lemma.

Lemma 2 If

m
p

= 1
m1

+ 1
m2

+ 1
m3

with positive integers m1, m2, m3 and gcd(m, n) = 1, then either m ∈ {1, 2, 3} or there exists
positive integers a, b with gcd(a, b) = 1, a positive integer c with c | a + b and a positive
integer u such that

m
p

= 1
abu

+ 1
pbcu

+ 1
pacu

or
m
p

= 1
pabu

+ 1
bcu

+ 1
acu

. (2)

We call the solutions from the left–hand side of (2) solutions of Type I and those from
the right–hand side of equation (2) solutions of Type II. The above lemma appears inmany
places (see [3], for example). However, we included the above proof of it since it can be
deduced from the main result in [1].
The above lemma shows that either

m = p + (a + b)/c
abu

or m = 1 + p(a + b)/c
abu

, (3)

where moreover a and b are coprime and (a+ b)/c is an integer. By symmetry, we always
assume that a ≤ b.
Recall that the goal in order to estimate∑

p≤x
A3(p).

That is, to count pairs (m, p) with p ≤ x such that m/p can be written as a Egyptian
fraction with three summands. If gcd(m, p) > 1, then p | m. Thus, m/p = k is an integer
and since it equals 1/m1 + 1/m2 + 1/m3 for some positive integers m1, m2, m3, we have
that k ∈ {1, 2, 3} and thenm ∈ {p, 2p, 3p}. Thus,∑

p≤x
A3(p) =

∑
p≤x

A∗
3(p) + O(π (x)) =

∑
p≤x

A∗
3(x) + O(x/ log x).

Thus, it suffices to count pairsm/p with gcd(m, p) = 1. We start with lower bounds.
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2 Lower bound
To prove the lower bound we count fractionsm/pwithm /∈ {1, 2, 3, p, 2p, 3p} arising from
solutions of Type I for a large x with the following property:

(i) a ∈ [x1/200, x1/100], τ (a) < (log x)4;
(ii) b ∈ [x1/20, x1/10], τ (b) < (log x)4;
(iii) τ (a + b) < (log x)4;
(iv) c | a + b, c ∈ [x1/200, x1/100];
(v) u ∈ [x1/200, x1/100] is coprime to a + b and τ (u) < (log x)4.

We letA(x) be the set of quadruples (a, b, c, u) with the above property. For such a quadru-
ple (a, b, c, u) ∈ A(x), we have

m = p + (a + b)/c
abu

.

Thus, p ≡ d∗ (mod abu), where d∗ := d(a, b, c) is the residue class of the number
−(a+ b)/cmodulo abu. Note that (a+ b)/c is coprime to ab because a and b are coprime
and (a + b)/c is coprime to u by construction. Before we dig into getting a lower bound,
we ask whether distinct quadruples (a, b, c, u) as above give rise to distinct fractionsm/p.
Well, let us suppose that they do not and that there are (a, b, c, u) �= (a1, b1, c1, u1) such
that m/p = m1/p1. Since m /∈ {p, 2p, 3p} it follows that m/p is not an integer. Hence,
m1/p1 is not an integer either, som/p = m1/p1 entails p = p1 andm = m1. So, we get

p + (a + b)/c
abu

= p + (a1 + b1)/c1
a1b1u1

.

In turn this gives

p(abu − a1b1u1) = ((a + b)/c)a1b1u1 − ((a1 + b1)/c1)abu.

Assume first that the right–hand side above is nonzero. The left–hand side is nonzero
also. Then p is a divisor of |((a + b)/c)a1b1u1 − ((a1 + b1)/c1)abu|, a nonzero number
of size at most xO(1), which therefore has at most O(log x) prime factors. Further, the
eight-tuple (a, b, c, u, a1, b1, c1, u1) can be chosen in at most

x2(1/10+1/100+1/100)+o(1) < x1/4 ways for large x.

Thus, there are at most x1/4 log x primes p that can appear in that way, and for each
such prime p we have A3(p) ≤ p1/2+o(1) as p tends to infinity by one of the results from
[2]. Thus, for large x, there are at most x1/4+1/2+o(1) < x4/5 pairs (m, p) for large x with
the property thatm/p arises from two different quadruples (a, b, c, u) and (a1b1, c1, u1) as
above for which abu �= a1b1u1. Since we are shooting for a lower bound of 
 x(log x)3,
these pairs are negligible for the rest of the argument.
Assume next that abu = a1b1u1. In this case, we also get

a + b
c

= a1 + b1
c1

. (4)

Since abu = a1b1u1 and gcd(b, a1u1) ≤ a1u1 ≤ x2/100 = x1/50, it follows that

gcd(b, b1) ≥ bx−1/50 ≥ x1/20−1/50 = x3/100.

Reducing equation (4) modulo gcd(b, b1), we get that

ac1 − a1c ≡ 0 (mod gcd(b, b1)).
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The left–hand side is an integer in absolute value at most

|ac1 − a1c| ≤ max{ac1, a1c} ≤ x1/100+1/100 = x2/100 < x3/100 ≤ gcd(b, b1).

It thus follows that ac1 = a1c so a/c = a1/c1. Since gcd(a, c) = gcd(a1, c1) = 1 (because
c | a + b and c1 | a1 + b1 and gcd(a, b) = gcd(a1, b1) = 1), it follows that a = a1, c = c1.
Now (4) implies b = b1 and the equality abu = a1b1u1 implies now that u = u1, so
(a, b, c, u) = (a1, b1, c1, u1), a contradiction. The above argument shows that∑

p≤x
A3(p) ≥

∑
(a,b,c,u)∈A(x)

∑
p≤x

p≡d∗ mod abu

1 + O(x4/5),

and it remains to deal with the first sum which equals:∑
(a,b,c,u)∈A(x)

π (x, abu, d∗).

For this, we use the Bombieri-Vinogradov Theorem. Note that we are counting primes p
in a certain arithmetic progression of ratio abu < x1/10+1/100+1/100 = x3/25 < x1/3. The
Bombieri-Vinogradov Theorem tells us that for every A, we have

∑
Q≤x1/3

max
1≤d≤Q
(d,Q)=1

∣∣∣∣π (x, Q, d) − π (x)
ϕ(Q)

∣∣∣∣ �A
x

(log x)A
. (5)

For us, we will take Q = abu. However, given Q, there are many ways to choose (a, b, u)
and then even more ways to choose c. Well, let us count how many ways there are. We
have τ (Q) = τ (abu) ≤ τ (a)τ (b)τ (u) ≤ (log x)12 by properties (i), (ii), (v). Thus, the triple
(a, b, u) with abu = Q and gcd(a, b) = gcd(a + b, u) = 1 can be chosen in at most
τ (Q)2 ≤ (log x)24 ways. Having chosen (a, b, u), we have that c | a+ b, so c can be chosen
in at most τ (a + b) ≤ (log x)4 ways. Hence, (a, b, c, u) can be chosen in at most (log x)28

ways. Note that (a, b, c) determine d∗ uniquely via d∗ ≡ −(a + b)/c (mod Q). Thus, for
each Q = abu, we have at most (log x)28 values of d∗. Taking A = 30 in (5), we get that

∑
(a,b,c,u)∈A(x)

π (x, abu, d∗) = π (x)
∑

(a,b,c,u)∈A(x)

1
ϕ(abu)

+ O
(

x
(log x)2

)
. (6)

We need to deal with the sum on the right–hand side above. Putting I := [x1/200, x1/100],
J := [x1/20, x1/10], τI(n) := ∑

d|n
d∈I

1, we have

∑
(a,b,c,u)∈A(x)

1
ϕ(abu)

=
∑
a∈J

τ (a)<(log x)4

∑
b∈I

(a,b)=1
max{τ (b),τ (a+b)}<(log x)4

τI(a + b)
ϕ(a)ϕ(b)

∑
u∈I

(u,a+b)=1
τ (u)<(log x)4

1
ϕ(u)

.

(7)

It is easy to sum up reciprocals. What gets in the way are the extra conditions, which are
coprimality and the restriction on the size of the divisors functions. Let us start with the
inner sum. Since ϕ(u) ≤ u, we have∑

u∈I
(u,a+b)=1

τ (u)<(log x)4

1
ϕ(u)

≥
∑
u∈I

(u,a+b)=1
τ (u)<(log x)4

1
u

≥
∑
u∈I

(u,n)=1

1
u

−
∑
u∈I

τ (u)≥(log x)4

1
u

:= S1,n − S2 (8)
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with n := a+ b. We need an upper bound on S2 and a lower bound on S1,n. We start with
the upper bound on S2. Since∑

u≤t
τ (u) ≤ t log t � t log x for all t ∈ [x1/200, x1/100],

it follows that if we set D := {u : τ (u) ≥ (log x)4} and put D(t) := D ∩ [1, t], then

#D(t) � t/(log x)3 uniformly for t ∈ I . (9)

Thus, by the Abel summation formula,

S2 =
∑

u∈D∩I

1
u

= #D(x1/100)
x1/100

− #D(x1/200)
x1/200

−
∫ x1/100

x1/200
#D(t)

(
− 1
t2

)
dt

�
∫ x1/100

x1/200

1
t(log x)3

dt + 1
(log x)3

� 1
(log x)2

. (10)

We now discuss S1,n. Clearly, if we take D = {u : (n, u) = 1}, and put D(t) = D ∩ [1, t],
we have

#D(t) =
∑
d|n

μ(d)
⌊
t
d

⌋
=

∑
d|n

μ(d)
(
t
d

+ O(1)
)

= ϕ(n)
n

t + O(τ (n)).

In particular,

S1,n =
∑
u∈I
u∈D

1
u

= #D(x1/100)
x1/100

− #D(x1/200)
x1/200

−
∫ x1/100

x1/200
#D(t)

(
− 1
t2

)
dt

=
∫ x1/100

x1/200

(
ϕ(n)
n

t + O(τ (n))
)

1
t2
dt + O

(
τ (n)
x1/200

)

= ϕ(n)
n

∫ x1/100

x1/200

dt
t

+ O
(

τ (n)
∫ x1/100

x1/200

dt
t2

+ τ (n)
x1/200

)


 ϕ(n)
n

log x + O(τ (n)x−1/200)


 ϕ(n)
n

log x + O(x−1/201),

where we use the fact that τ (n) = xo(1) for x → ∞, and in particular τ (n)x−1/200 �
x−1/201. Since (ϕ(n)/n) log x 
 log x/ log log x and x−1/201 = o(1) = o(log x/ log log x)
as x → ∞, it follows that in the above estimate, we may neglect the second term in the
right–most side. Hence,

S1,n 
 ϕ(n) log x
n

.

We thus get that

S1,n − S2 
 ϕ(n)
n

log x − O
(

1
(log x)2

)

 ϕ(n)

n
log x. (11)
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Thus, using (11) into (8), (7) becomes
∑

(a,b,c,u)∈A(x)

1
ϕ(abu)


 log x
∑
a∈J

τ (a)<(log x)4

∑
b∈I

(a,b)=1
max{τ (b),τ (a+b)}<(log x)4

τI(a + b)ϕ(a + b)
ab(a + b)

(12)

Now observe that n := a + b is in the interval [x1/20 + x1/200, x1/10 + x1/100]. We shrink
this to J1 := [x1/19, x1/10] and consider n = a + b ∈ J1 with a ∈ [x1/200, x1/100] coprime
to n. In fact, a is coprime to n if and only if a coprime to b. Further, b = n − a > n/2. So,
the sums in the right–hand side of (12) above exceed



∑
n∈J1

τ (n)<(log x)4

τI(n)ϕ(n)
n2

∑
a∈I

(a,n)=1
max{τ (a),τ (n−a)}<(log x)4

1
a
.

The extra condition τ (n − a) < (log x)4 is a translation of the condition τ (b) < (log x)4

with the new notations. We get that for fixed n, the inner sum satisfies
∑
a∈I

(a,n)=1
max{τ (a),τ (n−a)}<(log x)4

1
a

≥
∑
a∈I

(a,n)=1

1
a

−
∑
a∈I

τ (a)>(log x)4

1
a

−
∑
a∈I

τ (n−a)>(log x)4

1
a

:= S1,n − S2 − S3,

say. By the previous arguments, we have that S1,n 
 (ϕ(n)/n) log x, and S2 � (log x)−2.
It remains to deal with S3. Luckily, this has been done in [3]. Namely, Corollary 7.4 in [3],
shows that uniformly for t ∈ I , we have that

∑
a≤t

τ (n − a) � t log t � t log x.

Thus, puttingD := {a : τ (n − a) ≥ (log x)4}, and D(t) := D ∩ [1, t], we have that

#D(t) � t/(log x)3 uniformly for t ∈ I .

This is enough, via the Abel summation formula as in the argument used to derive (10)
from (9), to deduce that

S3 � (log x)−2.

Hence, we get that S1,n − S2 − S3 
 (ϕ(n)/n) log x, so that

∑
(a,b,c,u)∈A(x)

1
ϕ(abu)


 (log x)2
∑
n∈J1

τ (n)<(log x)4

τI(n)ϕ(n)2

n3
.

Lastly we need to worry about numbers with a bounded number of divisors, so we write
the last sum as

∑
n∈J1

τ (n)<(log x)4

τI(n)ϕ(n)2

n3
≥

∑
n∈J1

τI(n)ϕ(n)2

n3
−

∑
n∈J1

τ (n)≥(log x)4

τI(n)
n

:= S1 − S2.
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To bound S2 we note that by writing n = dv for some divisor d ∈ I , by changing the order
of summation, we have

S2 =
∑
n∈J1

τ (n)≥(log x)4

τI(n)
n

=
∑
d∈I

∑
n∈J1
d|n

τ (n)≥(log x)4

1
n

=
∑
d∈I

′∑
x1/19/d≤v≤x1/10/d

1
dv

,

where the prime ′ notation encodes the condition that τ (dv) ≥ (log x)4. Since τ (dv) ≤
τ (d)τ (v), it follows that either τ (d) ≥ (log x)2 or τ (v) ≥ (log x)2. Retaining this condition
for either d or v and summing up trivially over the other parameter, we get that

S2 � log x
∑

x1/200≤d≤x1/10
τ (d)≥(log x)2

1
d
. (13)

The counting function of the last set D := {d : τ (d) ≥ (log x)2} satisfies the inequality
#D(t) � t/ log x uniformly in t ∈ [x1/200, x1/20],

where as usual D(t) = D ∩ [1, t]. By the Abel summation formula, we get that
∑

x1/200≤d≤x1/10
τ (d)≥(log x)2

1
d

= O(1),

showing via (13) that S2 = O(log x). Finally,

S1 =
∑
n∈J1

τI(n)ϕ(n)2

n3

=
∑
d∈I

∑
n∈J1
d|n

ϕ(n)2

n3

=
∑
d∈I

∑
x1/19/d≤v≤x1/10/v

ϕ(dv)2

(dv)3



⎛
⎝ ∑

x1/200≤d≤x1/100

ϕ(d)2

d3

⎞
⎠

⎛
⎝ ∑

x1/19−1/200≤v≤x1/10−1/100

ϕ(v)2

v3

⎞
⎠


 (log x)2.

This shows that S1 − S2 
 (log x)2, and therefore that
∑
p≤x

A3(p) 
 π (x)(log x)4 + O
(

x
(log x)2

+ x4/5
)


 x(log x)3.

3 Upper bound
We shall bound the sum in the statement of Theorem 1 restricted to primes p that admit
solutions of Type I and Type II separately.



F. Luca, F. Pappalardi Res. Number Theory (2019) 5:34 Page 9 of 14 34

3.1 Type I solutions

In this case, from (3), we have

m = p + (a + b)/c
abu

. (14)

By symmetry,wemay assume thata ≤ b.Wemay also assume thatm ≥ (log x)4, otherwise
there are only O(π (x)(log x)4) = O(x(log x)3) pairs of positive integers (m, p) with p ≤ x
and m ≤ (log x)4, and this bound is acceptable for us. Thus, abu � x/(log x)4. Let δ > 0
to be fixed later.
Case 1. Assume that abu ≤ x1−δ .
Let f1(p) be the number of m arising in this way from some p. Then fixing abu and

c | a+b, we need to count the number of primes p ≤ xwith p ≡ d∗ (mod abu), where d∗

is the congruence class of −(a+ b)/cmodulo abu. Clearly, (a+ b)/c and ab are coprime.
The event that u is not coprime to (a + b)/c can happen for at most one prime p, and in
this case p divides a+b. Indeed, if d = gcd(u, (a+b)/c), thenmultiplying across equation
(14) by abu and reducing the resulting equation modulo d, we get p ≡ 0 (mod d). This is
possible only if d is prime and p = d, so p divides a + b. Hence,

(log x)4 ≤ m ≤ p + a + b
abu

≤ 2(a + b)
abu

≤ 4
au

≤ 4,

a contradiction for large x. Thus, we may assume that u is coprime to (a+ b)/c. Then the
number of such primes p ≤ x is therefore

π (x; abu, d∗) � x
ϕ(abu) log(x/(abu))

� x
ϕ(abu) log x

,

where the last inequality follows because abu ≤ x1−δ . Summing over a, b, c and u, we get
that the number of such situations is

S1 :=
∑
p≤x

f1(p)

� x
log x

∑
(a,b)=1
ab≤x

∑
c|a+b

∑
u≤x/ab

1
ϕ(abu)

� x
log x

∑
(a,b)=1
ab≤x

τ (a + b)
ϕ(a)ϕ(b)

∑
u≤x/ab

1
ϕ(u)

.

The inner sum is ≤ ∑
u≤x 1/ϕ(u) � log x. Thus,

S1 � x
∑

(a,b)=1
ab≤x

τ (a + b)
ϕ(a)ϕ(b)

.

We use the fact that
1

ϕ(n)
� σ (n)

n2
=

∑
d|n

1
dn

.

With this, and writing a = d1u, b = d2v whenever d1, d2 are divisors of a and b
respectively, we get that the above quantity is

S1 � x
∑

(a,b)=1
ab≤x

τ (a + b)
ϕ(a)ϕ(b)

� x
∑

(a,b)=1
ab≤x

τ (a + b)
∑
d1|a

∑
d2|b

1
d1ad2b

� x
∑
d1≤x
d2≤x

(d1 ,d2)=1

∑
u≤x/d1
(u,d2)=1

∑
v≤x/d2
(v,d1u)=1

τ (d1u + d2v)
d21d

2
2uv

. (15)
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Proposition 7.6 in [3] shows that uniformly in A, B, C, D all larger than 1, we have∑
a≤A,b≤B,c≤C,d≤D

(ab,cd)=1

τ (ab + cd) � ABCD log(A + B + C + D).

Writing A = 2i, B = 2j , C = 2k , D = 2� for i, j, k, � integers in [0, log x/ log 2], we have
that ∑

A≤d1≤2A,B≤d2≤2B,C≤u≤2C,D≤v≤2D
gcd(d1u,d2v)=1

τ (d1u + d2v)
d21d

2
2uv

� log x
AB

.

Summing this up over all i, j, k, � in [0, log x/ log 2] and puttingm := i + j, we get that
∑
d1≤x
d2≤x

(d1 ,d2)=1

∑
u≤x/d1
(u,d2)=1

∑
v≤x/d2
(v,d1)=1

τ (d1u + d2v)
d21d

2
2uv

� log x
∑

0≤i,j,k,�≤log x/ log 2

1
2i+j

� (log x)3
∑

0≤m≤2 log x/ log 2

m
2m

� (log x)3. (16)

Inserting (16) into (15), we thus get that

S1 � x(log x)3.

This was under the assumption that abu ≤ x1−δ . So, from now on we assume that
abu > x1−δ .
Case 2. Assume abm ≤ x1−δ .
Let f2(p) be the number of such pairs (m, p). To count

S2 =
∑
p≤x

f2(p),

we let a, b, c be fixed, then fixm such that abm ≤ x1−δ and we need to count the number
of primes p such that (p+ (a+b)/c)/(abm) = u is an integer. The number of such primes
is

π (x, abm, d∗) � x
ϕ(abm) log(x/(abm))

� x
ϕ(abm) log x

.

The last inequality above holds since abm ≤ x1−δ . Here, similar to the previous case, we
put d∗ for the class of −(a + b)/c modulo abm. Again, (a + b)/c is coprime to m, for if
not, as in the analysis of the previous case, we get that p | a + b, so that

1 ≤ u ≤ p + a + b
abm

≤ 2(a + b)
abm

≤ 4
m

≤ 4
(log x)4

,

which is false for large x. Now an argument similar to the one from Case 1 (just swap the
roles of u andm) leads to

S2 � x(log x)3.

Wenext comment on the sizes of a, b, c relative to each other. As we saw, we have a ≤ b.
If a = b, then since (a, b) = 1, we have that a = b = 1 so c ∈ {1, 2}. Thus, m | p + 1 or
m | p + 2. Hence, the number of such situations is

≤
∑
p≤x

(τ (p + 1) + τ (p + 2)) � x.
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From now on, a < b. If c = a + b, then m | p + 1. So, the number of such situations is∑
p≤x τ (p + 1) = O(x). We also assume that c ≤ (a + b)/2 < b. Thus, b > max{a, c}. We

write (a + b)/c = t so that b = ct − a and

(ct − a)aum = p + t.

Thus,

t(acum − 1) − a2um = p. (17)

Clearly,

t(acum − 1) = p + a2um ≤ p + abum = 2p + t ≤ 3x.

Case 3. Suppose that t ≥ xδ .
It follows that acum � x1−δ . We fix a, c, u,m and count the number of primes p ≤ x

given by the form (17). This is the same as counting the number of primes in some
arithmetical progression of ratio acum− 1 of first term a2um coprime to acum− 1. Note
that a2um and acum− 1 are coprime. By the Siegel-Walfisz theorem, the number of such
primes is

π (x, acum − 1, a2um) � x
ϕ(acum − 1) log(x/(acum − 1))

� x
ϕ(acum − 1) log x

.

For the right–most inequality above, we used the fact that acum � x1−δ . The constant
implied by the last Vinogradov symbol above, as well asmost of the ones from the previous
cases, depend on δ but at the end we will fix δ so all such constants are in fact absolute.
So, we the contribution of this situation is

S3 � x
log x

∑
acum≤x

1
ϕ(acum − 1)

. (18)

We need to estimate the last sum. We now use the formula
1

ϕ(n)
�

∑
d|n

1
dn

,

but we truncate it d < n1/5. Indeed,
1

ϕ(n)
�

∑
d|n

d≤n1/5

1
dn

+ O
(

τ (n)
n1+1/5

)
.

Since τ (n) = no(1), it follows that the last term on the right hand side is certainly
O(n−1−1/6) = o(1/n), so it can be absorbed into the left–hand side. With this, we get

∑
acum≤x

1
ϕ(acum − 1)

≤
∑

d≤(acum)1/5

∑
acum≤x
d|acum−1

1
d(acum − 1)

.

Fix d and acum such that d < (acum)1/5. Then acum − 1 ≡ 0 (mod d). There are
various possibilities according to which one of the four numbers a, c, u,m is larger. Say
c ≥ max{a, u,m}. Then c ≥ (acum)1/4 ≥ d5/4. Fix d, a, u,m. Then the congruence
c(aum) ≡ 1 (mod d) puts c into a progression c∗ (mod d), where c∗ ∈ [1, d − 1]. Let
c = c∗ + dt for some t. Since c∗ < d ≤ (acum)1/5 ≤ c4/5, we get that t ≥ 1. Then

acum − 1 = (aum)(c∗ + dt) − 1 = d
(
(aumt) + aumc∗ − 1

d

)
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and the last fraction above is a positive integer. Thus, we get that
∑

(a,c,u,m)
c≥max{a,u,m}

1
ϕ(acum − 1)

�
∑

d≤(acum)1/5

1
d2aumt

.

We now sum over d, a, u,m, t, getting

∑
acum≤x

c≥max{a,u,m}

1
ϕ(acum − 1)

�
(∑

d

1
d2

) (∑
a≤x

1
a

) (∑
u≤x

1
u

) ⎛
⎝∑

t≤x

1
t

⎞
⎠

(∑
m≤x

1
m

)

� (log x)4 .

A similar situation happens if one of the other 3 variables a, u,m is max{a, c, u,m}. Thus,
∑

acum≤x

1
ϕ(acum − 1)

� (log x)4 ,

which inserted into (18) gives S3 � x(log x)3.
Case 4. The remaining case.
Here, we assume that abu > x1−δ , abm > x1−δ , t < xδ . It then follows that

max{m, u, t} � xδ . Since abu > x1−δ and a < b, we get that b > x(1−2δ)/2. Since
b < ct ≤ cxδ , we get that c ≥ x(1−4δ)/2. Taking δ := 1/10, we get that c 
 x0.3. We return
to equation (17), which we write as

c(amut) − (t + a2um) = p.

Observe that

c(amut) = p + t + a2um � x + abum � x.

Thus, amut � x/c � x0.7. Also t + a2um is coprime to amut. Indeed, for if not, then the
only possibility is that p is a prime factor of the number gcd(amut, t + a2um) which must
divide t. Thus, p ≤ xδ . Thus, the number of such pairs is at most∑

p≤xδ

A3(p) ≤ xδ+1/2+o(1) ≤ x2/3 for large x.

Fix a,m, u, t. We apply the Siegel-Walfisz theorem to get that for fixed a,m, u, t, the
number of such primes is of order at most

π (x, amut,−(t + a2um)) � x
ϕ(amut) log(x/(amut))

� x
(log x)ϕ(amut)

.

The last inequality follows again because amut � x1−δ . We now sum up over all a, u, t, m
getting

S4 � x
log x

(∑
a≤x

1
ϕ(a)

) (∑
m≤x

1
ϕ(m)

) (∑
u≤x

1
ϕ(u)

) ⎛
⎝∑

t≤x

1
ϕ(t)

⎞
⎠ � x(log x)3.

This finishes the problem for the Type I solutions.

3.2 Type II solutions

Here, from (3), we have

m = 1 + p(a + b)/c
abu

.
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Again, (a, b) = 1 and u is coprime to (a + b)/c otherwise the above m is not an integer.
The cases when abu ≤ x1−δ similar as in the case of solutions of Type I, since then the
number of such pairs is

�
∑

abu≤x1−δ

(a,b)=1

∑
c|a+b

π (x, abu, ρ∗)

�
∑

abu≤x1−δ

(a,b)=1

xτ (a + b)
φ(abu) log(x/abu)

� x
log x

∑
abu≤x

τ (a + b)
φ(a)φ(b)φ(u)

� x(log x)3,

as in the analysis of the Type I situations. The same comment applies when abm ≤ x1−δ .
From now on, we assume that abu > x1−δ and abm > x1−δ . We write t := (a + b)/c and
note that b = ct − a. Hence,

1 + pt = 1 + p(a + b)/c = abum = a(ct − a)um = (acumt) − a2um,

so

acum − (a2um + 1)
t

= p.

This signals t as a divisor of a2um + 1. Further, since

m = 1 + pt
abu

= 1 + pt
a(ct − a)u

>
p
acu

,

it follows that acum > p. Since b ≥ a, we have that ct ≥ 2a, so ct − a ≥ ct/2, therefore

m = 1 + pt
a(ct − a)u

≤ 2tp
a(ct/2)u

= 4p
acu

,

showing that acum ≤ 4p. In particular, acum � p. Let us fix a, u,m and t | τ (a2um + 1).
Then

acum + a2um + 1
t

= p (19)

determines p uniquely in terms of c. Since c can be chosen in at most 4x/(aum) ways and
t in at most a2um + 1 ways, we get that the number of possibilities is

≤ x
∑

aum≤x

τ (a2um + 1)
aum

.

It follows easily from Proposition 1.4 and Corollary 7.4 in [3] that∑
A≤a≤2A

∑
U≤u≤2U

∑
M≤m≤2M

τ (a2um + 1) ≤ AUM(log x)2,

whenever A, U, M are positive integers in [1, x]. It then follows that
∑

A≤a≤2A

∑
B≤b≤2B

∑
M≤c≤2M

τ (a2mu + 1)
amu

� (log x)2.

Summing this up over all (A,U,M) = (2i, 2j , 2k ) with i, j, k integers in [0, log x/ log 2], we
get an upper bound of O(x(log x)5).
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Onemay ask which bound is closer to the truth.We believe the lower bound is closer to
the truth. Indeed, in the upper bound quite likely we have an extra log x factor for the sum
τ (a2mu+ 1) over a’s (see the Remark 1.5 in [3]). In addition, we should be able to save an
extra factor of log x in the upper bound by imposing that the expression in the left–hand
side of (19) is prime (in our sum, we only summed over those t such that t | a2um+1 and
did not use the extra condition that acum+ (a2um+ 1)/t is prime). Because of these two
extra conditions which we did not fully exploit, we conjecture that in fact the estimate∑

p≤x
A∗
3(p) � x(log x)3

holds and leave this as an open problem.
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