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An “Egyptian fraction representation” of a given rational a/# is a solution in positive
integers of the equation
a 1 1

n mi mip
In case k = 2 (resp. k = 3) we shall say it is a binary (resp. ternary) representation. A
variety of questions about these representations have been posed and studied. Some of
these require them to be distinct but we shall not impose such a condition here. We refer
to the book by Guy [4] for a survey on this topic and an extensive list of references.
The object of our study is the following function:
Ak(n)z#{aGN:L—Z = —+—+"'+i, mi, ma, . .., Mg EN}.
n mi my miy
The case of binary Egyptian fractions was considered in [2] where it was shown that
As(n) < n°Y as n — oo and that
xlog®x <« ZAz(n) < xlog® x.
n<x
Note that some of the results in [2] were improved in [5].
The binary Egyptian fractions with prime denominators are significantly simpler. In fact
it is quite easy to show that A>(p) = 2 + t(p + 1) where 7 is the divisor function. From
this observation, it follows that

ZAz(p) = 315“3)96—!— O( * ) as  x — oo

= 274 log x

Here, we consider ternary Egyptian fractions and we study the average value of A3(p) as
p ranges over primes. It is shown in [2] that A3(n) < nt/2oM) a5 1 — 00, We prove the

following theorem.
Theorem 1 We have

x(logx)® « ZA3(p) < x(logx)® asx — oo.

p=x
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As we shall see, the proof of the upper bound consists in estimating separately the
contribution of fractions m1/p that admit a ternary Egyptian fraction expansion:

m 1 1 1

—=—+—+ —.

p m  mp m3
with p | ged(m1, my) and p 1 m3 (Type I) and the contribution of those with p | m; and
p t mams3 (Type II).

The fraction of Type I are proven to contribute to A3(p) with O(x log® x) and those of
Type I with O(x log® x). We feel that, with some care, the 5 in the latter log power should
be lowered. The proof of the above result was inspired by the paper of Elsholtz and Tao
[3] where, for a positive integer #, it is considered the number of integer solutions %, y, z
of the equation

1 Preliminaries
We start with a description of Az(p). Recall the following result from [1].

Lemma 1 There is a representation of the reduced fraction m/n (that is, gcd(m, n) = 1) as
m/n = 1/my+1/my+1/ms3 ifand only if there are six positive integers D1, Do, D3, v1, V2, V3
with

(i) lcm[Dl, Dz, Dg] | n, ng(Dl, D2, Dg) = 1;
(i) vivavs | D1vi + Dava + D3vs, and ged(d;v;, vj) = 1 for all i # j with {i,j} € {1, 2};
(iii) m | (D1v1 + Dava + D3v3)/(vivavs),

andputtingE = lem[Dy, Dy, Dg],fl = }’I/E,fz = (D1v1 + Dyvy + D3V3)/(WIV1V2V3) and
f = fifo, we have

(m1, my, m3) = ((E/D1)vavsf, (E/Da)vivaf, (E/D3)vivaf ). (1)

Let us see the above lemma at work when # = p is a prime. By condition (i) of the lemma,
we first need Dy, Dy, D3 such that lem[Dy, Dy, D3] | p. This means that lem[Dy, Dy, D3] €
{1, p}. The case in which lem[Dj, Dy, D3] = 1 leads to D; = Dy = D3 = 1 and now
condition (ii) shows that

vivavs | v1 + vo + vs.

In particular, assuming v; < vy < v3, we get v1vov3 < 3v3, so vivp < 3. Thus, there
are three possibilities for the pair (v1, v2) and then since v3 | v; + v;, we infer that there
are only the following three possibilities for (Dy, Dy, D3, v1, v, v3), namely (1,1, 1, 1, 1, 1),
(1,1,1,1,1,2)and (1, 1, 1, 1, 2, 3). Hence, m € {1, 2, 3}.

Assume next that lem[Dy, Dy, D3] = p. The situation D; = Dy = D3 = p is not possible
since then the condition (D1, Dy, D3) = 1 is not satisfied. Thus, not all Dy, D, D3 are
multiples of p. We then distinguish two cases.

The first case is when there exists exactly one D; for i € {1, 2, 3} which equals p. Say
D; = p. Then

vivavz | pv1 +v2+v3  and m | (pvi + va + v3)/(vivavs3).
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In this case, E = p,so E/D1 = 1, E/Dy = p and E/D3 = p. Furthermore, fi = 1 and

fo = (pv1 + va + v3)/(mp). Thus, f = fifo = fo. In addition, v; | v2 + v3 and
m 1 1 1

- 4 + .
p  vavaf  pvivaf  pvivaf
In addition, v9 and v3 are coprime.

Assume now that there are two indices i,j € {1,2,3} such that D; = D; = p. Say
Dy = D3 = p. We then get that

vivavs | vi + pva + pvs.
Furthermore, E = p, E/D1 = p, E/Dy = 1,E/Ds = 1,f] = 1. Moreover, m | (pv1 +pva +

v3)/(vivaw3), fo = (pv1 + pva + v3)/(mvivav3), f = f> and
m 1 1 1

— = + + .
p  pvavsf  vivsf  vivef
If p | vy, it follows that

m 1 1 1 3
<44 < =

p~p p PP
so again m € {1,2,3}. Thus, suppose that p 1 v;. We then have from the fact that v; |

p(vy + v3) together with the fact that p { v, that vy | vy + v3. In addition, v, and v3 are
coprime.
To summarise, we proved the following lemma.

Lemma 2 If

m 1 1 1
—_— = 4 — 4+ —
p mi my ms3

with positive integers mi, ma, m3 and gcd(m, n) = 1, then either m € {1, 2, 3} or there exists
positive integers a, b with gcd(a, b) = 1, a positive integer ¢ with ¢ | a + b and a positive
integer u such that

m 1 n 1 n 1 m 1 1 1
—=— or — = —_—
p abu  pbcu  pacu p pabu  bcu  acu

(2)

We call the solutions from the left—hand side of (2) solutions of Type I and those from
the right—hand side of equation (2) solutions of Type II. The above lemma appears in many
places (see [3], for example). However, we included the above proof of it since it can be
deduced from the main result in [1].

The above lemma shows that either
p+a+b)c 1+ pla+b)/c
m=————————— or m= ———"-

) (3)
abu abu
where moreover a and b are coprime and (a + b)/c is an integer. By symmetry, we always

assume thata < b.
Recall that the goal in order to estimate

> As(p).

p<x
That is, to count pairs (m, p) with p < x such that m/p can be written as a Egyptian
fraction with three summands. If gcd(m, p) > 1, then p | m. Thus, m/p = k is an integer
and since it equals 1/m1 + 1/my + 1/m3 for some positive integers m11, m, m3, we have
that k € {1, 2, 3} and then m € {p, 2p, 3p}. Thus,

> As(p) = )_A3(p) + 0w (x) = ) A3(x) + Olx/ log ).

p=x p=x p=x

Thus, it suffices to count pairs m/p with ged(m, p) = 1. We start with lower bounds.
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2 Lower bound
To prove the lower bound we count fractions m/p with m ¢ {1, 2, 3, p, 2p, 3p} arising from
solutions of Type I for a large x with the following property:

(i) a e [x1/200, x1/100] +(4) < (log x)%;

(ii) b e [x1/20,x1/10], 7(b) < (logx)*;
(iii) t(a+ b) < (logx)*;
(iv) c|a+b,c e [x1/200, x1/100],

1/200 41/100]

V) uelx is coprime to @ + b and 7(u) < (logx)*.

We let A(x) be the set of quadruples (a, b, ¢, u) with the above property. For such a quadru-
ple (&, b, ¢, u) € A(x), we have

o Ltlatbc

abu

Thus, p = d* (mod abu), where d* := d(a, b, c) is the residue class of the number
—(a+ b)/c modulo abu. Note that (a + b)/c is coprime to ab because a and b are coprime
and (a + b)/c is coprime to u by construction. Before we dig into getting a lower bound,
we ask whether distinct quadruples (4, b, ¢, u) as above give rise to distinct fractions m/p.
Well, let us suppose that they do not and that there are (g, b, ¢, u) # (a1, b1, c1, u1) such
that m/p = my/p1. Since m ¢ {p, 2p, 3p} it follows that m/p is not an integer. Hence,
my /p1 is not an integer either, so m/p = m; /p; entails p = p1 and m = m;. So, we get

p+a+b)jc _p+lai+b)ja

abu arbiu '

In turn this gives
plabu — a1biu1) = ((a + b)/c)arbruy — ((a1 + b1)/c1)abu.

Assume first that the right—hand side above is nonzero. The left—hand side is nonzero
also. Then p is a divisor of |((a + b)/c)aibiuy — ((a1 + b1)/c1)abu|, a nonzero number
of size at most x%0), which therefore has at most O(logx) prime factors. Further, the
eight-tuple (4, b, ¢, u, a1, b1, c1, u1) can be chosen in at most

x2(1/10+1/100+1/100)+0(1) _ ,1/4 ways for large .

Thus, there are at most x/%logx primes p that can appear in that way, and for each

such prime p we have A3(p) < p!/2+o()

as p tends to infinity by one of the results from
[2]. Thus, for large x, there are at most x1/4+1/240(1) . x4/5 pairs (m, p) for large x with
the property that m/p arises from two different quadruples (4, b, ¢, #) and (a1 b1, c1, u1) as
above for which abu # aibiu;. Since we are shooting for a lower bound of 3> x(log x)3,
these pairs are negligible for the rest of the argument.
Assume next that abu = a;bju;. In this case, we also get
a+b a+b
Cc - c1

: (4)
Since abu = a1biu; and ged(b, ar1u1) < aqu; < x2/100 — 21750 it follows that

gcd(b, by) > b~ 1/50 > 41/20-1/50 _ ,3/100,
Reducing equation (4) modulo gcd(, b1), we get that

aci —aic=0 (mod gcd(b, by)).
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The left—hand side is an integer in absolute value at most
laci — aic| < max{acy, aic} < x1/100+1/100 _ ,2/100 _ ,3/100 ged(b, by).

It thus follows that ac; = ajc so a/c = ai/c1. Since ged(a, ¢) = ged(ay, ¢1) = 1 (because
¢|la+bandc; | a; + b1 and ged(a, b) = ged(ay, b1) = 1), it follows that a = a3, ¢ = ¢;.
Now (4) implies b = b; and the equality abu = a;biu; implies now that u = u, so
(@, b, ¢, u) = (a1, by, 1, u1), a contradiction. The above argument shows that

A= D > 1406,

p=x (a,b,c,u)e A(x) p=x
p=d* mod abu

and it remains to deal with the first sum which equals:
> mabud).
(a,b,c,u)e A(x)
For this, we use the Bombieri-Vinogradov Theorem. Note that we are counting primes p
in a certain arithmetic progression of ratio abu < x!/10+1/100+1/100 — 43/25  x1/3 The

Bombieri-Vinogradov Theorem tells us that for every A, we have

max |7(x Q d) — 7 () <A X = (5)
!5 1=d=<Q 9(Q) (log x)
Q=% (4,Q)=1

For us, we will take Q = abu. However, given Q, there are many ways to choose (4, b, u)
and then even more ways to choose c. Well, let us count how many ways there are. We
have 7(Q) = t(abu) < t(a)t(b)t(u) < (logx)'? by properties (i), (i), (v). Thus, the triple
(@, b, u) with abu = Q and gcd(a, b) = ged(a + b,u) = 1 can be chosen in at most
7(Q)? < (log x)** ways. Having chosen (, b, u), we have that ¢ | @ + b, so ¢ can be chosen
in at most t(a + b) < (logx)* ways. Hence, (4, b, ¢, u) can be chosen in at most (log x)?®
ways. Note that (g, b, ¢) determine d* uniquely via d* = —(a + b)/c (mod Q). Thus, for
each Q = abu, we have at most (log x)?® values of d*. Taking A = 30 in (5), we get that

o 1 x
Y rwabwd*)=m(x) Y w(dbu)+o((logx)2). ©6)

(a,b,c,u)e A(x) (a,b,c,u)e A(x)

We need to deal with the sum on the right—hand side above. Putting 7 := [xl/ 200, 1/ 1007,

T = [x1/20, x1/10] ¢ (n) := > din 1, we have

deT
Z 1 Z Z 'L'I(ﬂ + b) Z 1
@homen PP acT eae) = )
(a)<(log x)* (a,b)=1 (wa+b)=1
max{r(b),r(a—o—b)]<(logx)4 r(u)<(10gx)4
(7)

It is easy to sum up reciprocals. What gets in the way are the extra conditions, which are
coprimality and the restriction on the size of the divisors functions. Let us start with the
inner sum. Since ¢(u#) < u, we have

> owc X o

ueZ <p(u) uel

(w,a+b)=1 (n,a+b)=1

1'(14)<(10gx)4 r(u)<(logx)4
Y- X o,
uel u uel u
(wn)=1 7(u)>(log x)*

=S1n— S (8)
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with n := a + b. We need an upper bound on S; and a lower bound on S ,,. We start with
the upper bound on S,. Since

Z T(u) <tlogt < tlogx forall te [x1/200 5 1/100

u<t

it follows that if we set D := {u : T(u) > (logx)*} and put D(¢) := D N [1, t], then
#D(t) K t/(logx)3 uniformly for ¢ e Z. 9)

Thus, by the Abel summation formula,

1
Sp= Y -
ueDNT u
#D(51/100 #(51/200 x1/100 1
_ D& T) #D ) #D@) (—— ) dt
%1/100 %1/200 /200 £2
< / - di
<200 £(log x)3 (logx)3
< ! (10)
(logx)?”
We now discuss Sy,,,. Clearly, if we take D = {u : (n, u) = 1}, and put D(¢) = D N [L, ¢],
we have
t o(n)
#D(t) = Z,U«(d) {ZJ Z,U«(d) ( + O(l)) = Tt + O(t(n)).
dln
In particular,
1
Sin = —
Ln Z u
uel
ueD
#D(x1/100 #D(x1/200 x1/100 1
_ PP ) FPE ) #D(t) dt
x1/100 x1/200 1720 2
) t(n)
- /x1/200 < n t—I—O( (Vl))) dt+O( 1/200)
x1/100 dt x1/100 dt
= #ln) — 40|t — + )
n x1/200 L x1/200 t2 x1/200
> pn) )logx+ O(t ()~ /200)

> (0( )logx+O( ~1/201
where we use the fact that (1) = x°) for x — o0, and in particular 7(n)x~1/200 «
x71/201 Since (¢(n)/n)logx > logx/loglogx and x~1/201 = o(1) = o(logx/ loglog x)
as x — 00, it follows that in the above estimate, we may neglect the second term in the
right—most side. Hence,

n)logx
Sl,n > (/)()Tg

We thus get that

Sin— 82> wlo O( ! ) > ¢ () log x. (11)
(log x)?
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Thus, using (11) into (8), (7) becomes

1 v7(a + b)g(a + b)
> > logx Y 3
(@bomens £@b®) wed P ab(a + b)
7(a)<(log x)* (a,b)=1

max{t(b),7(a+b)}<(logx)*
(12)

Now observe that # := a + b is in the interval [x1/20 4 x1/200, x1/10 4 x1/100] e shrink
this to J; := [x1/1%,x/19] and consider #n = a + b € J; with a € [x1/2%0, x1/190] coprime
to n. In fact, a is coprime to # if and only if a coprime to b. Further, b = n — a > n/2. So,
the sums in the right—hand side of (12) above exceed

tz(n)p(n) 1

> oy e
neJi acl
t(n)<(log x)* (an)=1

max{r(a),t(nfa)}<(logx)4

The extra condition 7(# — a) < (logx)* is a translation of the condition 7(b) < (logx)*
with the new notations. We get that for fixed #, the inner sum satisfies
1 1 1
Yy l:xl-x il %
a acl a acl a acl

(am)=1 (an)=1 7(a)>(log x)* 7(n—a)>(logx)*
max{t(a),7(n—a)}<(log x)*

=S1n— 82— S3,

say. By the previous arguments, we have that Sy ,, > (p(#n)/n)logx, and Sy <« (logx) 2.
It remains to deal with S3. Luckily, this has been done in [3]. Namely, Corollary 7.4 in [3],
shows that uniformly for ¢ € Z, we have that

Zr(n —a) K tlogt < tlogx.

a<t
Thus, putting D := {a : t(n — a) > (logx)*}, and D(t) := D N [1, t], we have that
#D(t) < t/(logx)?’ uniformly for ¢ e Z.

This is enough, via the Abel summation formula as in the argument used to derive (10)
from (9), to deduce that

S3 <« (logx) 2.

Hence, we get that S1,, — So — S3 > (¢(n)/n) log x, so that

2
Z > (logx)? Z M

1’13
(a,b,c,u)€ A(x) neJ
7(n)<(log x)*

¢(abu)

Lastly we need to worry about numbers with a bounded number of divisors, so we write
the last sum as

tz(m)g(n)’* w7 (m)g(n)’ 77(n)
y, Tl g mbeer oy

neJgi nen neg
7(n)<(log x)* 7(n)>(log x)*

= 51 — 52,

Page 7 of 14

34
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To bound S, we note that by writing #n = dv for some divisor d € Z, by changing the order
of summation, we have

S, = Z TI;EH)

negi
7(n)>(log x)*

- T .
deI  nen
d\n
r(rl)z(logx)4

> x4

deT x1/19 Jd<y<x1/10/4

where the prime ’ notation encodes the condition that 7(dv) > (logx)*. Since t(dv) <
7(d)T(v), it follows that either 7(d) > (logx)? or 7(v) > (logx)?. Retaining this condition
for either d or v and summing up trivially over the other parameter, we get that
1
Sy < logx Z —. (13)

x1/200 g -, 1/10
7(d)>(log x)?

The counting function of the last set D := {d : t(d) > (logx)?} satisfies the inequality
#D(t) < t/logx uniformlyin ¢ € [x1/200, 1/20],

where as usual D(¢) = D N [1, £]. By the Abel summation formula, we get that

1
E - =0(1),
d
x1/200 < < 1/10
7(d)>(log x)*

showing via (13) that S, = O(log ). Finally,
2
S5i=3 tz(n)g(n)

3
n
neJi

_ o(n)*
d\n

-y oy e
(dv)3
deT x1/19 /d<y<x1/10/y
2 2
o(d) o)
S - ¥ v
x1/200 < < 1/100 #1/19-1/200 <1< 1/10-1/100

> (log x)2.

This shows that S; — Sy > (log x)?, and therefore that

X

Y As(p) > w(x)(logx)* + O <

p=x

3 Upper bound
We shall bound the sum in the statement of Theorem 1 restricted to primes p that admit
solutions of Type I and Type II separately.
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3.1 Type I solutions
In this case, from (3), we have
_ptla+b)c
- abu '
By symmetry, we may assume that a < b. We may also assume that m > (log x)%, otherwise

(14)

there are only O(r (x)(log x)*) = O(x(log x)3) pairs of positive integers (1, p) with p < x
and m < (logx)*, and this bound is acceptable for us. Thus, abu < x/(logx)*. Let § > 0
to be fixed later.

Case 1. Assume that abu < x'7°.

Let fi(p) be the number of m arising in this way from some p. Then fixing abu and
¢ | a+ b, we need to count the number of primes p < x withp = d* (mod abu), where d*
is the congruence class of —(a + b)/c modulo abu. Clearly, (a + b)/c and ab are coprime.
The event that u is not coprime to (a 4+ b)/c can happen for at most one prime p, and in
this case p divides a + b. Indeed, if d = gcd(y, (a+ b)/c), then multiplying across equation
(14) by abu and reducing the resulting equation modulo d, we get p = 0 (mod d). This is
possible only if d is prime and p = d, so p divides a + b. Hence,

abu — abu au
a contradiction for large x. Thus, we may assume that u is coprime to (a + b)/c. Then the

number of such primes p < x is therefore
x x

@(abu)log(x/(abu)) < @(abu) logx’

where the last inequality follows because abu < x'~%. Summing over 4, b, ¢ and u, we get

7w (x; abu, d*) <

that the number of such situations is

S1 = Zﬁ(p)

XX Y

logx
(a, b) 1cla+b u<x/ab
ab <x
x t(a + b) 1
< > > .
logx 4~ pla)p(b) = o)
ab<x

The inner sumis < »° _ 1/¢(u) < logx. Thus,

b
S1 <K x Z M'

yrall p(a)p(b)
ab<x
We use the fact that
1 o(n) 1
YRS g
o(n) n o dn

With this, and writing a = diju, b = dyv whenever dj, dy are divisors of a and b
respectively, we get that the above quantity is

Si<x Y T(“);(Z < x Z a+b)ZZ 1ﬂd2b

(a,b)=1 dila ds|b
ab<x ab<x

<Y ¥ ¥ f‘d;;‘dju‘f”. (15)

di<x u<x/d, v<x/d
dr=<x (wdr)=1 (v,diu)=1
(d1,d2)=1
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Proposition 7.6 in [3] shows that uniformly in A, B, C, D all larger than 1, we have

> t(ab+cd) < ABCDlog(A + B+ C + D).

afA,be,ch,de
(ab,cd)=

Writing A = 2/, B =2, C = 2K, D = 2 for i, j, k € integers in [0, log x/ log 2], we have
that

Z t(dru + dyv) log x

2 72 AB :
A<d<2A,B<d)<2B,C<u<2C,D<vy<2D dle”V
ged(diu,dav)=1

Summing this up over all j, j, k, £ in [0, log %/ log 2] and putting m := i + j, we get that

(diu + dav) 1
O I N

di<x u<x/d] v<x/dy 0<ij,kt<logx/log2
dy=<x (udy)=1 (v,d1)=1
(dr,d2)=1

3 m
<« (logx) > o

0<m=2logx/log2
< (logx)>. (16)

Inserting (16) into (15), we thus get that
S1 < x(log x)>.

This was under the assumption that abuy < x17%. So, from now on we assume that

abu > x179.

Case 2. Assume abm < x'78,

Let f>(p) be the number of such pairs (m, p). To count

S2=" fp)

p=x

1-8 and we need to count the number

we let a, b, ¢ be fixed, then fix m such that abm < x
of primes p such that (p + (@ + b)/c)/(abm) = u is an integer. The number of such primes
is

x

7 (x, abm, d*) < X <
’ ’ (abm) log(x/(abm)) @(abm)logx’

The last inequality above holds since abm < x'~°. Here, similar to the previous case, we
put d* for the class of —(a + b)/c modulo abm. Again, (a + b)/c is coprime to m, for if
not, as in the analysis of the previous case, we get that p | a + b, so that

P +a+b Z(a + b) < 4

= abm abm (log x)*’

1<u

which is false for large x. Now an argument similar to the one from Case 1 (just swap the
roles of u and m) leads to

Sy < x(logx)>.
We next comment on the sizes of g, b, ¢ relative to each other. As we saw, we havea < b.
If a = b, then since (a4, ) = 1, we have thata = b = 1soc € {1,2}. Thus,m | p+ 1 or
m | p + 2. Hence, the number of such situations is

<) T+ D)+ +2) <

p=x
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From now on, a < b.If ¢ = a + b, then m | p + 1. So, the number of such situations is
prx 7(p + 1) = O(x). We also assume that ¢ < (a + b)/2 < b. Thus, b > max{a, c}. We
write (a + b)/c = t so that b = ¢t — a and

(ct —a)aum = p +t.
Thus,

tacum — 1) — a*um = p. (17)
Clearly,

Hacum — 1) = p + a’um < p + abum = 2p + t < 3x.

Case 3. Suppose that t > x°.
It follows that acum < x'~%. We fix 4, ¢, u, m and count the number of primes p < x
given by the form (17). This is the same as counting the number of primes in some

arithmetical progression of ratio acum — 1 of first term a>

um coprime to acum — 1. Note
that a>um and acum — 1 are coprime. By the Siegel-Walfisz theorem, the number of such
primes is

X X

) - 1’ 2 '
7 (%, acum @ um) < @(acum — 1) log(x/(acum — 1)) < @(acum — 1)logx

For the right—most inequality above, we used the fact that acum < x!~°. The constant
implied by the last Vinogradov symbol above, as well as most of the ones from the previous
cases, depend on § but at the end we will fix § so all such constants are in fact absolute.
So, we the contribution of this situation is

S5« — Y : (18)

log x i p(acum — 1)

We need to estimate the last sum. We now use the formula

1 1

oln) o

but we truncate it d < #/5. Indeed,

1 1 7(n)
— —4+0|——=).
o(n) < Z dan + <n1+1/5>

d|n
d<nl/5

Since (1) = n°W, it follows that the last term on the right hand side is certainly
O(n~171/6) = o(1/n), so it can be absorbed into the left—hand side. With this, we get

1 1
Z placum — 1) = Z Z d(acum — 1)’

acum=<x d<(acum)l/5 acum=x
d|acum—1

Fix d and acum such that d < (acum)'/®. Then acum — 1 = 0 (mod d). There are
various possibilities according to which one of the four numbers 4, ¢, i, m is larger. Say
¢ > max{a, u, m}. Then ¢ > (acum)}’* > d5/*. Fix d, a, u, m. Then the congruence
c(aum) = 1 (mod d) puts ¢ into a progression c¢* (mod d), where ¢* € [1,d — 1]. Let
¢ = c¢* + dt for some ¢. Since ¢* < d < (acum)Y/® < ¢*/°, we get that £ > 1. Then

aumc* — 1>

acum — 1 = (aum)(c* +dt) —1=d ((ommt) + y
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and the last fraction above is a positive integer. Thus, we get that

1 1
Z o(acum — 1) < Z d2aumt’

(a,¢,u,m) d<(acum)l/5
c>max{a,u,m}

We now sum over d, a, u, m, t, getting

c>max{a,u,m) = = <x

< (log x)%,

A similar situation happens if one of the other 3 variables 4, u, m is max{a, ¢, u, m}. Thus,

1
- - 1 4)
Z ¢(acum — 1) < (log)

acum=x
which inserted into (18) gives S3 < x(log x).
Case 4. The remaining case.

=5 abm > x17%, t < x%. It then follows that

(1-26)/2.

Here, we assume that abu > «x
max{m, u,t} < x°. Since abu > x'% and a < b, we get that b > «x Since
b < ct < cx®, we get that ¢ > x¥1749/2 Taking § := 1/10, we get that ¢ >> x%3. We return

to equation (17), which we write as
clamut) — (t + a’um) = p.
Observe that
clamut) =p+t+ a’um <K x + abum < x.

Thus, amut < x/c < x%7. Also t + a’>um is coprime to amut. Indeed, for if not, then the
only possibility is that p is a prime factor of the number gcd(amut, t + a®um) which must
divide ¢. Thus, p < x°. Thus, the number of such pairs is at most

Z Asz(p) < x0T1/2+0) < 423 forlarge  «.

p=<x’

Fix a, m, u,t. We apply the Siegel-Walfisz theorem to get that for fixed a, m, u, ¢, the
number of such primes is of order at most

x x
<<(

7 (%, amut, —(t + a*um)) <

@(amut) log(x/(amut)) log x)p(amut)’

The last inequality follows again because amut < 2178, We now sum upoveralla, u, t, m
getting

X 1 1 1 1 3
Sy K fog# <Z w) (Z m) <Z M) ZM < x(logx)°.

a<x m=<x u=<x t<x

This finishes the problem for the Type I solutions.

3.2 Type Il solutions
Here, from (3), we have

1+pla+b)/c
m= —————,
abu
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Again, (4, b) = 1 and u is coprime to (a + b)/c otherwise the above m is not an integer.

1-6

The cases when abu < x similar as in the case of solutions of Type I, since then the

number of such pairs is

< Z Z 7 (x, abu, p

abu<x'7% cla+b
(a,b)=1

x7(a + b)
< Z ¢(abu)log(x/abu)

abu<x'~ 5
(a,b)=1

x (a+b)
< oz 2= S0

< x(log x)?,

as in the analysis of the Type I situations. The same comment applies when abm < x!7°.

From now on, we assume that abu > x'~% and abm > x1~%. We write ¢ := (a + b)/c and

note that b = ¢t — a. Hence,

1+ pt =1+ pla+ b)/c = abum = alct — a)um = (acumt) — a*um,

S0
(a®um + 1) B
- =

acum —

This signals ¢ as a divisor of a’um + 1. Further, since

1+pt  1+pt >L
abu  alct —a)u ~ acu’

it follows that acum > p. Since b > a, we have that ct > 2a, so ¢t — a > ct/2, therefore

1+pt - 2p 4p
" alet —a)yu ~ alct/2u  acu’

showing that acum < 4p. In particular, acum =< p. Let us fix a, u, m and ¢ | T(a’um + 1).
Then

2
1
acum + % =p (19)

determines p uniquely in terms of c. Since ¢ can be chosen in at most 4« /(aum) ways and
t in at most a’um + 1 ways, we get that the number of possibilities is

<x Z (a?um + )'
aum=<x
It follows easily from Proposition 1.4 and Corollary 7.4 in [3] that
Z Z Z t(a’um + 1) < AUM(log x)?,
A<a<2A U<u<2U M<m=<2M
whenever A, U, M are positive integers in [1, x]. It then follows that
2
t(@a“mu+1
Y OY Y HEED ogar
amu
A<a<2A B<b<2BM=c<2M

Summing this up over all (4, U, M) = (2}, 7, 25y with i, j, k integers in [0, log x/ log 2], we
get an upper bound of O(x(log x)°).

34
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One may ask which bound is closer to the truth. We believe the lower bound is closer to
the truth. Indeed, in the upper bound quite likely we have an extra log x factor for the sum
t(a?mu + 1) over a’s (see the Remark 1.5 in [3]). In addition, we should be able to save an
extra factor of log x in the upper bound by imposing that the expression in the left—hand
side of (19) is prime (in our sum, we only summed over those ¢ such that ¢ | a?um + 1 and
did not use the extra condition that acum + (a®um + 1)/t is prime). Because of these two
extra conditions which we did not fully exploit, we conjecture that in fact the estimate

3" 45(p) < x(logx)®

p=x
holds and leave this as an open problem.
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