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Let I" be a finitely generated subgroup of @* with rank r. We study the size of
the order |7} of I" mod p for density-one sets of primes. Using a result on the
scarcity of primes p <x for which p—1 has a divisor in an interval of the type
[y, yexplog® y] (r~0.15), we deduce that |I,| =p”"*" explog® p for almost all
p and, assuming the Generalized Riemann Hypothesis, we show that |I},| > p//(p)
(Y = o0) for almost all p. We also apply this to the Brown-Zassenhaus Conjecture
concerned with minimal sets of generators for primitive roots.  © 1996 Academic

Press, Inc.

1. INTRODUCTION

Let r be a positive integer. We say that r non-zero integers a,, ..., a4, are
multiplicatively independent if whenever there exist m,, ..., m, € Z such that

ay---am=1,
it follows that m,= --- =m,=0. We assume that none of a,, .., a, is a
perfect square or +1; let I denote the subgroup of Q* generated by
ai,..,a, and let |I,| denote the order of such a group I" (mod p).

In the case r=1, I'=<{a), let ord,(a) denote the order of a (mod p).
The famous Artin Conjecture for primitive roots (see [1]) states that
ord,(a) = p —1 for infinitely many primes p.

Artin’s Conjecture has been proved under the assumption of the
Generalized Riemann Hypothesis by C. Hooley (See [ 13]). In his paper it
is implicitly shown (unconditionally) that

ord, (a) > \/p/log p (1.1)
for all but O(x/log® x) primes p < x.
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We also mention that Heat-Brown (see [12]) building on the work of
Gupta and Murty (see [9]) has shown that if {a,, a,, a3} are any three
multiplicatively independent integers different from +1 and such that none
of

{al , Ay, a3, —3a,a,,—3a,a3,—3a,a;, a, 3203}
is a perfect square, then there exists at least one i for which the number of

primes p < x with ord,(a;)=p—1is >(x/log> x).
The following extends (1.1).

PRrRoOPOSITION 1.1.  With the above notation, we have that

r/(r+1)

p
log p

17|

for all but O(x/(log x)>**'") primes p<x. More generally, if Y(x) is any
function that tends steadily to infinity with x, then

|1;)|><W(pp)>r/(r+l)

for all but O(=(x)/\y(x)) primes p < x.

Proposition 1.1 is a consequence of the following result which is implicit
in a paper of Matthews (see [14]).

LemMMmA 1.2, Suppose that r is a function of t such that rt ' is bounded.
Then

1+ 1/r

t
#{P||1}|<l}<1 271y loga,

ogt
uniformly with respect to t, r and {a, .., a,}.

Proof of Lemma 1.2. Consider the set
M = {a’l” e .a’r”r | Ognl_gtl/r}_

As a,, .., a, are multiplicatively independent, no two elements of .# can be
equal; therefore the number of elements of .# exceeds

([t ]+ 1) >t
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If p is prime such that |I,|<?, then two distinct elements of .# are
congruent (mod p). Hence, p divides

mj my

--al

’
my

—a 1

|, ar]

for some m,, m,, ..., m, and m', m,, ..., m, satisfying
' 1/r
0<m,, m <t

Note that we may also assume that for all i =1, ..., r one of m; or m; is zero
since if we could not assume so, then p would divide some «a; and the
contribution of such p’s is w(a,---a,).

We will say that a 2r-tuple of numbers (m,, m,, .., m,, my, mj, .., n.)
is compatible if (1) m; or m; is zero for all i=1, .., r, (ii) there exists at
least one non-zero component and (iii) all non-zero components lie in the
interval [0, #'/].

For a fixed compatible 2r-tuple, the number of primes dividing N is
bounded by

1/r r
log N <l t

— 1 ;.
log log N " log ¢ Z: 08 4:

The last inequality holds since
N<(ajay---a,)*".

Taking into account that the number of compatible 2r-tuples is (2¢'/")"
which is <27t for rt~'"= 0O(1), the total number of primes p that we are
counting cannot exceed

0 <t”1/"r2’ >r_, loga, >
log ¢

This completes the proof of the lemma. ||

Proof of Proposition 1.1. We apply Lemma 1.2 with t=x""""Y/log x
and we find that the set of primes for which |I,|<p”"*"/log p<t is
O(n(x)/log' =V x). Therefore, for almost all primes we have the desired
inequality. |

We say that a sequence of integers {a,, a5, ..., a,, ..} is a multiplicatively
independent sequence, if for any r, {a,, a,, .., a,} are multiplicatively inde-
pendent integers. If r =r(p) is a given function of p, we will still denote by
|7,| the order of the group generated by a;, i <r(p) (mod p). Note that this
is well defined for all primes that do not divide any of the a}s and the
number of such primes p <x is < log a;.

i<r(x)
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In 1969, H. Brown and H. Zassenhaus (see [2]) considered a problem
which is the r-uniform version of the Artin Conjecture and conjectured that
if a,=2, a,=3,..,a, is the rth prime number and if r(p)>log p then
|1,| =p—1 for almost all primes p.

Applying the Theorem of Burgess and Elliott on the least primitive root
(see [7]), it is easy show that if r(p) >log” p loglog* p then |I,|=p—1
for almost all primes p.

We ask for the uniform estimate obtained using the same method and
firstly note that the contribution of the the sizes of the a;/s cannot be too
small. In fact:

ProrosiTION 1.3.  Let
Y(r) =min { Y loga,|a, .. a,, multiplicatively independent r-tuple},
i=0
we have that

Y(r)=rlogr+ O(r).

Proof. For any multiplicatively independent a, ..., @,, we can assume
a,; =21, ..,a,=r and therefore

I =

Y loga,= ), logi=logr!=rlogr—r+ O(logr).
i=1 1

1

The last identity is the Stirling formula. Therefore
Y(r)y=rlogr+ O(r).

Choosing a, =2, ..., a, = p,, the rth prime, and applying the Prime Number
Theorem, we see that

Y(r)< Y log p;=p, + O(p, exp—c, /log p,)

i=0
=r logr+ O(r exp —c, /logr).
Hence the claim. ||

Due to this result, whenever r grows with p, we will assume from now
on that a,, .., a, are such that

Y loga;<rlogr. (1.2)
i=0

i=
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If in the proof of Proposition 1.1, we take

XS(X) r(x)/r(x)+1
= (2'<X)(r<x)>2 log r<x>> ’

we are led to the following statement:

LemmA 1.4. Let r=r(p) be any given function of p in the range of
Lemma 12 and let {a,,a,,..a,,..} be a multiplicatively independent
sequence satisfying (1.2). For any function &(p) of p that tends to zero as p
tends to oo, we have that

pe(p) \r/(r+1)
|7, ><2r210gr> (1.3)

P
for all but O(xe(x)/log t) primes p < x, uniformly with respect to r.

Setting r(p) =./log p/log 2 we optimize (1.3). Therefore we have

THEOREM 1.5. With the same notation as above, we have that if

r(p) =./log p/log 2 then

> pe(p)
) =

exp(2 /log 2 log p) log p loglog p

for all but O(x(x)e&(x)) primes p<x. More generally, if «e€(0,1/2] and
r(p) =log* p/\/log 2, then

- pe(p)
exp(/log 2(log* p +log' = p)) log**p log log p

for all but O(n(x) &(x)) primes p < Xx.

\r

17|

2. THE RESULTS

In this section we improve the results stated in the introduction. They
will be proven in Section 4:

THEOREM 2.1. Let r be a fixed positive integer, let 1= (1—1log2)/2 and
let \y be any function of p that tends steadily to infinity with p. We have that

log™ p
|F|>pr/(r+1)exp< >
! exp(y(p) /log log p)

for almost all p.
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The case in which r grows with p can be treated in an analogous fashion.
In particular

THEOREM 2.2. With the same notation as in Lemmal4, let 20 <1=
(1 —1log?2)/) and r(p)=log*p//log2. For any function Y(x) that tends

steadily to infinity with x,
exp(log™™** p/exp(y(p) /log log p))

|| =p
exp(+/log 2(log' =* p +log* p))

for almost all p.

We conclude establishing the version of Theorem 2.1 under the assump-
tion of the Generalized Riemann Hypothesis.

THEOREM 2.3. For any d square-free and for a e Q*, let {,(s) denote the
Dedekind zeta function of the Kummer field

Q(Ly, a').

Suppose that there exists an integer a € I" such that, for every square-free d,
the Generalized Riemann Hypothesis holds for {,(s). Then if y(x) is any
function that tends steadily to oo as x — o0,

I|>—— P
v(p)

Sor all but O(n(x) log y(x)/y( f ) primes p < X.

It is natural to consider an extension of Artin’s Conjecture for the more
general r-rank case. R. Gupta and R. Murty considered in [ 8] the analogue
of this problem for the groups of rational points of an elliptic curve.

On the GRH it is possible to prove the “r-rank Hooley’s Theorem” so
to determine density of the set of primes p for which I, =[F*. The Conjec-
ture of H. Brown and H. Zassenhaus can also be answered under the
assumption of the Generalized Riemann Hypothesis. This will be done by
the author in a subsequent paper where it will be shown that on the GRH,
for any function r =r(p) that tends steadily to infinity with p, the first r(p)
primes generate a primitive root for almost all primes p.

Next we consider the sum

In the case I'=<a), this quantity was considered by R. Murty and
S. Srinivasan in [15] where they proved that the sum is O(x'?) and
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conjectured that it is O(x?). They also noticed that if the sum is O(x'*),
then Artin’s Conjecture follows. Theorem 2.1 allows us to obtain the
following improvement.

COROLLARY 2.4. There exists an absolute constant t,>0 (we can taken
7, =0.0306) such that
1/(r+1)
Rp(x) <
lo

g] +7:2/(r+l)x'

3. THE KEY LEMMA

In this section we state and prove the technical result that will be used
to prove the results in Section 2:
By way of notation we set

¢=¢(x)=loglogx,
THEOREM 3.1. Define
S(x, y,z)=#{p<x|Julp—1, withuely, yz1},

where without loss of generality we may assume that y < \/;c
For any 6€[0,1/2) we let

7s=1—(1/2+09)(1 —log(1/2+9))
Ts=0/21og(1+9)

so that 7o=(1—1og?2)/2=0,1535640972 and 7,=0. For any function y(x)
that tends steadily to infinity with x we have, uniformly with respect to y,

o(1) logzlog' “x
st <x i gt e ()l e

Before starting the proof of Theorem 3.1, we need to state some
preliminary lemmas:

Lemma 3.2, Let ¥Y(x, y) be the number of natural numbers up to x whose
greatest prime divisor is less than y. Then

log x
P(x, y) < x exp {—c4 loi y}

where ¢, is an absolute constant.
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LemmA 3.3. Let Q(n) be the number of prime divisors of a natural
number n counted with multiplicity.

For fixed ae(0,1) let p,=1—0a(1 —loga). For any function y(x) that
tends steadily to infinity with x, we have that the number of integers n up to
x such that

Q(n)<af+lﬁ\/g

is

0 <  explesy \/E)>

log?” x

where cs depends only on o.

Lemma 34. Fix =0 and let p,=a/4 log(1 + a/2). For every function

W(z) that tends steadily to infinity with x, the number of primes p up to x
for which

Qp—1)>(1+0)é+y /&

is o(x/log' *7 x).

LemMmA 3.5. For any natural number m <Xx, denote by N(x,m) the
number of solutions of

p—l=gm
where p and q are prime numbers < x. We have that

X

PP
N ) < Gy o xjm)

Lemma 3.2 is a classical result due to N.G. de Bruijn (see [3]),
Lemma 3.3 can be deduced quite directly from the work of G. H. Hardy
and S. Ramanujan (see [ 11]) and Lemma 3.4 is due to P. Erdos (see [4]),
while Lemma 3.5 is a standard application of the Selberg bound (see
Halbertstam and Richert [ 10] at page 177).

Note that the constant j, in Lemma 3.4 is not sharp while p, is
probabily optimal. Nevertheless for the purpose of our application j, is
adequate.

Proof of Theorem 3.1. Consider the set

S={p<x|ulp—1, withuely, yz]}.
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Since the primes p up to x/logx contribute for O(x/log®x), we can
assume that p > x/log x and p € ¥ means that

p—1=uww with ue[y, yz] and ve[ s ’x}
yzlogx' y

Now let i, =, (x) be a function that tends steadily to infinity with x to
be determined later. If both

Qv)> (1 +0)E+y, /¢

and

Q) > +0)E+y, /¢
then

Qp—1)>(1+26)E+2y, /&
The number of p e & for which this holds is
S#{p<x|Q(p—1)>(1+20)E+2y, /&)

which by Lemma 3.4, is

X
—_ 2
0<log1”"x>’ (32)
where T5=p,s.

Therefore, we will assume that Q(v) < (34 9)E+y,(x) \/E, since the
condition Q(u) < (3+0)E+ Y, (x) \/E follows in a similar way.

For a fixed u, the number of v’s for which the maximum prime divisor
is less then ¢ is, by Lemma 3.2,

sl % g, lotbos)|
u

X
<uexp{—c4 log ¢ log ¢

The last estimate holds since u < yz, hence x/u > x/yz.
If we set

1
log 1 = og(x/yz)
3log x

>
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then (3.3) becomes

B log(X/yZ)} I x
log(x/yz) § ~u log?x’
log log x

X
<exp{
u

Therefore, the number of p € ¥ for which all the prime divisors of v are
less then ¢ is

1 x <xlogz X

<Y’

u

(34)

u log®x = log® x : log? x

(here the dash on the sum sign means that the sum is extended to all the
values of u for pe ¥ and indeed > !, 1/u < f; dt/t <log z).
Therefore we can assume that

p—1=uv,q,

with u and v, in the desired range, ¢ > exp(c, log(x/yz)/3¢) and

Qv)) < A&+ (x) &

From Lemma 3.5, we see that for fixed # and v,, the number of possible
solutions is
< X
LY.
uv, log?(x/uv,)

Now note that since uv, < x/q < x exp(—c4(log(x/yz))/3 log log x),

1 < 62 < 52
< < .
log(x/uv,) ~log*(x/yz) ~log? y/z

The last estimate follows from the assumption y < \/;c
As an application of Lemma 3.3 we know that

T(h) = # {n<h | Q(n)<<;+5> &)+, M}

exp(csyi(h) /E(h))

< h
log®™ h

where 75=p,,, , ;. Partial summation implies that

l‘@ﬁlx%M(log“”x) exp(ce1 /2).

Q) < (12 +8)é +yy JE T
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Therefore the number of p e & with the required properties is

doglogx (g Ly )

log”(n/2) \ogpy <12ty vz 01\ u

x log z .

Gogyiz) 108 HleR e VO (35)

The estimate in (3.1) follows by taking vy, (x) =¥(x)/3c¢s.
Finally, (3.2), (3.4) and (3.5) together complete the proof. |

Remark. Theorem 3.1 is a p — 1-version of a Theorem due to Erdés and
Hall (see [5]). A general statement on estimates of the number of n<x
with a divisor in a given range has been proven by Tenenbaum (see [17]).

4. CONCLUSION

Proof of Theorem 2.1. 1If we let m,=(p—1)/|I,|, then the proof of
Proposition 1.1 implies that we can choose ,(x) that tends steadily to
infinity with x such that for all but O(z(x)/{;(x)) primes p up to x

m, < x"U Dy (x).

Now we apply Theorem 3.1 with yz=x"""Yy (x) and § =0 and we get
that for every function y,(x) that tends steadily to infinity with x

log z log® ™" x exp(y/, \/E)} (4.1)

S(x, y, z) <7n(x) {0(1)+ (log x —log z)?

So the value logz=1log® x/exp(2y, \/E) makes the right side of (4.1)
o(m(x)).

Finally for almost all primes p,
log® x >

m,<y=x"""Dy (x) exp<—exp(2¢ \/E) )
2

Choosing ¥, = /3 and y, sufficiently slow we get the claim. ]

Proof of Theorem 2.2. As in the proof of Theorem 2.1 we let m,=
(p—1)/I1,]. Then for all but O(z(x)/y,(x)) primes p up to x

m, <, (x) exp (y/log 2(log* x +log' ~* x)) log®* x log log x, (4.2)
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where ,(x) is a function that tends steadily to infinity to be determined
later.

Now we apply Theorem 3.1 with yz equal to the right hand side of (4.2)
and 6 =0 and see that for every function ¥,(x) that tends steadily to
infinity with x,

log zlog' =" x exp(Y, m)> (43)

(loglfoc o

S(x, y,z)=o(7r(x))+0< —
x—logz)log ~*x

Now, if we set

T—2a

log X
exp(2y, /log log x)’

we see that the right hand side of (4.3) is o(7(x)).
Finally for almost all primes p,

exp(/log 2(log* x +log' ~* x)) log* x log log x
exp(log® " x/exp(2y/, /log log x))

Choosing v, =y/3 and , sufficiently slow we get the claim. |

log z=

mp<y:l//1(x)

Proof of Corollary 2.4. Let us break the sum into three parts:

1 1 1
— — — 44
> S wEt I (44

[Tyl <y y<|lpl<:z z<|Ipl<x

By Lemma 1.2, the number of primes p for which |[[)|<u is

O(u'"* Y log u). Hence, by partial summation, the first sum is

1/r
0< J >
log y

The third sum in (4.4) is trivially
<1 X >’
z log x

1
<; S(x, x/z, z/y).

while the middle sum is

If we set
xr/r +1

, z=x""*1exp(log® x),
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then Theorem 3.1 implies that (4.4) is

Vel
(log x) \log”" x log® *~7"x log® "x)

We optimize this by choosing J, such that 75, =75, =7, and y=1,r/(r 4+ 1).
A calculation shows that 7, =0.0306 and this completes the proof. ||

Proof of Theorem 2.3. We start by noticing that
|1 > ord, (a).

If ord,(a) > p/(p) then (p—1)/ord,(a) <y (p) <y(y/x) say.
On the other hand, by Theorem 2.1, for all except O(z(x) log w(x)/l//(\/;c))
primes p up to x, we have that

(p—1)/ord,(a) = /x exp(—log™ x)
for some 7> 0.
So we want to estimate the sum

Y #{p<x|d=(p—1)/ord,(a)}. (4.5)

1//(\/,;) <d<./xexp(—log’x)

The condition
a(p71>/d5 1 (mod p)

implies that p=1 (mod d) and that a is a dth root in [} so p splits com-
pletely in the extension K,= Q((,, a"/") of Q.

We denote by n,(x) the number of such primes p up to x. m,(x) is
estimated by the Chebotarev Density Theorem. More precisely, we find,
assuming the Generalized Riemann Hypothesis, that

li(x)

=——"—+ O(x'?log dx
(K, Q] ( g dx)

77'-t/(x)

(see for example [ 13] or [8]).
Therefore the sum in (4.5) is bounded by

> {h(x)Jr O(x"? log dx)}
W(/x) <d<./xexp(—log" x) [K,: Q]

<) <d>§ﬁ> orar) o)

which is
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Finally the claim would follow if we show that

1 log ¢

Lkl (46)

From Hooley’s work in [13], we find (regardless whether d is square-free
or not) that

[K;: Q] > dop(d).
Then the sum in (4.6) is

<L dold)

d>t

<logt Y,

d>t

dz’

since ¢@(d) = d/log d and this concludes the proof. |

Remark. Theorem 2.3 can be proven under the weaker Hypothesis that
for all positive integers d, the Dedekind zeta function of the Galois field

@(gda a%/d’ ooy ai/d)

has no zeroes to the right of the line R(s)=r/(r +1).

Such an assumption allows one to determine an error term in the
Chabotarev Density Theorem for the field Q((,, al/?, ..., a/?) of the order
of x”7*+1 and the proof is completed using the same argument.

We conclude by summarizing the results we established in this work for
the classical case r=1:

THEOREM 4.1. Let a be an integer which is not +1 nor a perfect square,
and let ord,(a) be the order of a mod p. Then for all p<x

(i) ord,(a) 2\/ﬁ/¢(x) with at most O(n(x)/(Y(x))?) exceptions;

(ii) ordp( a) = ./p exp log* p with at most O(x/(log x)' **) exceptions;
i) 3, ljord,(a) <\/x/(logx)'*7;

(iv) lf, for any d square-free, we assume generalized Riemann

Hypothesis for the Dedekind zeta function of the Kummer field Q(¢,, a'/?),
then ord,(a) = p/(p) with at most O(n(x) log Y(x)/(x)) exceptions;

(111

where a, B and y are suitably chosen positive number (o < (1 —log?2)/) and
Y(x) is any function that tends steadily to oo as x — oo.

Let K/Q be a finite extension and let a4, ..., a, € Ox be multiplicatively
independent integers which are not +1 or perfect squares. We can again
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denote by I the subgroup of K* generated by «;, .., , and by || the
order of I" modulo the prime ideal p of (.

The same questions as in the rational case can be asked in this general
setup. Estimates of |I7| have many applications. 1. Shparlinski gives an
account of some of these in [ 16]. He notices that argument of Lemma 1.2

yields
[T, > <NK/@(p) >W+ Y
P \U(Nge(p))

(Y — o0), for almost all prime ideals p.
The results of this paper extend to the general case. It is enough to notice
that almost all prime ideals p with N (p) <x have degree one.
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