Functiones et Approximatio
**(202%), 1-22
doi: 10.7169/facm/1902

DENSITY OF THE “QUASI »-RANK ARTIN PROBLEM”

HERISH ABDULLAH, ANDAM ALI MUSTAFA, FRANCESCO PAPPALARDI

Abstract: For a given finitely generated multiplicative subgroup of the rationals which possibly
contain negative numbers, we derive, subject to GRH, formulas for the densities of primes for
which the index of the reduction group has a given value. We completely classify the cases of rank
one, torsion groups for which the density vanishes and the the set of primes for which the index
of the reduction group has a given value, is finite. For higher rank groups we propose some partial
results. Finally, we present some computations comparing the approximated density computed
with primes up to 100 and those predicted by the Riemann Hypothesis.

Keywords: 7.

1. Introduction

Let I C Q* be a finitely generated multiplicative subgroup. We denote by Supp T,
the support of I, i.e. the finite set of those primes ¢ such that the /—adic valuation
of some elements of I' is nonzero.

For any prime p ¢ Supp I', we can define the reduction group:

Fp={ymodp:yeT} CF,
and the prime counting function:
mr(z,m) = #{p <z :p¢Suppl,[F, : ;] = m}.
We also define the density (if it exists) as

p(T;m) = lim Lﬂ(x,m)

T—00 7'((3;
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which exists under the Generalized Riemann Hypothesis and it can be expressed
by the following formula (see [12], [1], [13], [7]):

_ n(k)
p(r,m) = ; [Q(ka71'\1/mk) . Q] (1)

Here ¢q = €*™/4 and T''/¢ denote the set of real numbers « such that o € T

IfT = (a) with a € Q\ {—1,0, 1}, then the density in question is the density
of primes p for which the index of @ modulo p equals m. In the case m = 1, the
statement that, for a not a perfect square, p({a),1) exists and it is not zero is
known as the classical Artin Conjecture for primitive roots which, in 1965, was
shown by C. Hooley [2] to be a consequence of the GRH. Hooley gave a formula
for p({a),1) in terms of an Euler product which is consistent with (1).

If we write @ = 4b" with b > 0 not an exact power of a rational number,
d = disc(Q(v/b)) and F;, = Q((r, a'/?) so that

0 —1)/ged(h,l) if€>2o0ra>0
[Fe: Q] = .
2 if {=2and a <0,

then:

o, 1= (- ~1 o
p({a),1) = | 1 5 H[FZ:Q]—l Xl;[<1 [Fei@]).

o)d

In the above and in the sequel, ¢ will always denote prime numbers. The case when
m > 1 has been considered by various authors [8],[16], [6]. In particular (Moree
[6, Corollary 2.2]), if m is odd, then

I R G -1 | (mh)
plla),m) = |1 > gw%@q e

42m (2)

)T )
helme

In the above and in the sequel, m, will always denote the ¢—part of m (i.e. my =
¢v¢(™) where vy is the /-adic valuation). A formula for the remaining case, m even,
can be found in [6, Theorem 2.2].

The case when the rank of T" is greater than 1 was considered in [1, 7, 13, 11].
For I' C Q* finitely generated subgroup and m € N, we set I'(m) :=T"- Q*™/Q*™

and
[T XH( arcenen) * L (- a=mmn) - ©

£>2
Um

A(T,m) =
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For v € T'(m), v’ € Z denotes the unique, up to the sign, m—power free represen-
tative of v (y = +' - Q*™). The sign of +' is chosen to be positive if m is odd or
ify=+"-Q*"" Cc Q" :={q€Q:q> 0}, and is negative otherwise If @ > 0 and
v € ['(2%)[2] (the 2-torsion subgroup of T'(2%)) with v # Q*2", then 7/ = +12"
with 79 € N,vy > 1 square free. We shall denote disc Q(\/%) by () which is
easily seen to depend only on ~.

For I' C QT, we define:

[(m) := {7 € T(m2)[2] : v2(6()) < va(m)}. (4)

It is easy to check that I'(m) is a 2-group and if ' C Q*, then

! if 24 m

Fim) — {v€T(2):7y =1mod 4} if 2||m

=Y Ger@p oty ifdlm ©
T'(ms)[2] it 8]}m.

The group I'(m) will be defined also in the case when T' ¢ Q* in (8).

Finally, we set:
D | ®
'yEF(k)flts)((’Y)

For the special case when I" contains only positive rational numbers, in [13], it
was proved the following:

Theorem. Let I' C QF be multiplicative subgroup of rank v and let m € N. Then

P(I‘,m) = A(Fam) X <BF,m - %BF,2m>

where A(T',m) is defined as in (3) and Br, is defined as in (6).

Note that, for m odd, Br,,, = 1 and the formula above specializes to

p(T,m) = \r |H< ~ Z:)ig|)fl;[n<1_(€—1l)lf(€)l>

x |14+ Z H W (7)

YET(2)\{Q*?} £|25(7)
5(y)=1 mod 4 #m

which, for m = 1, should be compared with [7, 4.6. Theorem]. Furthermore, one
can check that the formula in the above result from [13] coincides with that of
Moree’s |6, Theorem 2.2| in the case when I' = (a) with a € Qt,a # 1.
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The goal of this paper is to extend the above Theorem by removing the con-
straint that I' € Q*. We prove the following:

Theorem 1. Let I' C Q* be multiplicative subgroup of rank r > 1 and let m € N.

Let
_ ify C QT then va(8(7)) < va(m);
Hm) = {’Y LM 2 it G o+ then un(0(2) = vam) 4 1 } S

Then, with A(T',m) defined as in (3) and Bry, defined as in (6),

p(T,m) = A(T,m) <Bp’m — m3p7gm> .

Clearly, the definition of T'(m) in Theorem 1 reduces to the one in (4) when
I' ¢ Qt. Furthermore, it is not hard to verify that:

{1} if 24 m;

- r2):v=1 d4 if 2||m;

F(m) = {veT(2) 7' =1mo 2} . i [[m; )
{y €T(4) : either v/ =~§,2tv0 or ¥ = =§,2 | v} if 4|m;
I'(m2)[2] NQT if 8 | m.

Hence T'(m) is also a 2-group. The above identity should be compared with (5).
If m is odd, then the formula for p(T',m) in the statement of Theorem 1 simplifies
to the same as in (7).

In Section 4 we specialize to the case when I" = (—1, a) where a € Q*\{0,1, -1}
can be assumed to be positive. We deduce from Theorem 1 an explicit formulas
for p(_1,ay,m Which is used in Section 5 to prove the following:

Theorem 2. Leta € QF,a # 1, write a = al, where ag € Q* not the exact power
of any rational number and write ag = aja3 where a; > 1 is uniquely defined by
the property to be a positive square free integer. The density p({(—1,a), m) = 0 if
and only if one of the following two (mutually exclusive) cases is verified:

1. 3| h,31m,3 | ar,a1 | 3m, 2{h,2|m,24aq;

2. 3|1 h,3tm,3|a,a1|3m, wva(h)<wve(m)#1.
Furthermore, on GRH, the set {p : [IF; : (=1,a),| =m} is finite if and only if one
of the above two conditions is satisfied.

Examples of pairs (a,m) satisfying 1. of Theorem 2 are (a,m) = (32,2),
(153,10), ... and examples of pairs satisfying 2. are (a,m) = (3%,4), (1512, 40),. ..
A list of more values of (a,m) is presented in the second table of Section 7.

Next, in Section 6, we investigate the identity

p(Tym) =0
and the problem of determining whether
Nt = {p € SuppT,ind, I = m}

is finite.
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IfT' = (g) with g € Q\ {0,1,—1}, this problem has been solved (on GRH) by
Lenstra [4, (8.9)—(8.13)] (see also [6]). In fact, we have the following result.

Theorem (Lenstra [6, Theorem 4]). Let g € Q\{—1,0,1} and write g = g2,
where go € QV is not the power of any rational number. The density p({g),m) =0
if and only if one of the following siz (mutually exclusive) cases holds:

2 {m, disc(Q(\/9)) | m;

g >0, va(m) > va(h), 3| h, 3tm, disc(Q(v/=3g0)) | m;

g < 07 2*h7 2Hm7 3'|'7’TL, 3 | h7 diSC(Q(\/ 390)) | m;

g <0, 2|k, 2||m, disc(Q(+/2g0)) | 2m;

g <0, 2||h, 4|m, 3| h, 31tm, disc(Q(+/—6go)) | m;

g <0, va(m) > 14 wvy(h), 3| h, 3tm, disc(Q(~/—3g0)) | m.

Furthermore, on GRH, N4y , is finite if and only if one of the above two conditions
is satisfied.

R el S

In the higher rank case, we partially generalize the above in the following way:

Theorem 3. Let I' C Q* be a non—trivial, finitely generated subgroup and let
m € N. Then p(I',m) = 0 when one of the following three conditions is satisfied:

A. 2¢m and for all g € T, disc(Q(\/g)) | m; )
B. 2| m, 3tm, I'(3) is trivial and there is v1 € I'(m) such that 3 | (1) | 6m.
C. 2||m, IT'(2)| = 2,T'(2m) =T'(4) and for all v € T'(2m), §(v) | 4m.

Remark. Regarding the last property of Theorem 3, note that I' and m satisfy
2||m, then

Ir'2)| =2 and  I'(2m)=T(4)
if and only if
L T(2) ={Q"*,—Q**}; \ \
2. the elements of I'(4) are of the form 43Q** or —472Q** with 7o € N odd and

square free;
3. T'(4) contains at least one element of the second form.

In fact, if gQ** € T'(2) with g € I" and |g| not a perfect square, then gQ** € T'(4)
is an element of order 4 so that I'(2m) is proper subgroup of I'(4). The form of

I'(m) is described in (9). Finally, at least one of the elements has to be of the form
f4»y§Q*47 otherwise I'(2) = {Q*z}'

The result in Theorem 3 is compatible with the result of Lenstra. In fact

Proposition 1. Suppose ' = (g) and m € N. Then condition A. of Theorem 3
reduces to condition 1. of Lenstra’s Theorem, condition C. reduces to condition 4
and condition B. reduced to one of conditions 2, 3,5 or 6 according to the following:

2. |ifg>0

3. | ifg<0,va(m)=1 and va(h) =0
5. | if g <0, va(m) =2 and va(h) =1
6. | if g <0 and va(m) > va(h) +1

where g = :I:g{} with go # 1 not the power of a rational number.
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When rankI" > 2, we do not know in general if p(I',m) = 0 implies that at
least one of the conditions of Theorem 3 is satisfied. Possibly the approach due to
Lenstra, Moree and Stevenhagen [5] could provide a complete characterization of
the pairs T'; m with p(I’,m) = 0 also in the case when I' contains some negative
rational numbers. The techniques of [5] have been adapted to the context of higher
rank groups by Moree and Stevenhagen in [7| where the case m = 1 is considered.
On the other hand, at least in the case when m is odd, condition 1. of Theorem 3
is also necessary. In fact we have the following:

Proposition 2. Assume that 21 m and p(T',m) = 0. Then condition 1. of Theo-
rem 8 is satisfied.

We conclude with the following:

Proposition 3. Assume that T' C Q* and m satisfy one of the three conditions of
Theorem 3, then Nt ., is finite. In particular, on GRH, if 21 m,

Nrom finite <= ¥4Q*? € T'(2), disc(Q(/7)) | m.

2. The degree of Kummer extensions
In this section we determine an explicit formula for the order of the Galois group
# Gal(Q(¢m, T /Q) = [Q(Gm, T : Q)

where d | m, G = >™/™ and TV4 = {{/a € R: a € T'}.

By the standard properties of Kummer extensions (see for example [3, Theo-
rem 8.1]), if we denote by K,, = Q({,) the cyclotomic field, we have

Gal(K,, (TY4) / K.,) 2 T(d) /Ty a (10)

where ['(d) := I'-Q*/Q*? and [, g := (F QN K;d) /Q*?. Note that if d > 1
is odd, then K7,“NQ* = Q*?, and

m

Il

Fm,d Hrm,dg = Fm,dz'
l\d

We recall that for v € T'(d), v € Z denotes the unique, up to sign, d-power
free representative of v (y =~/ - Q*%). The sign of 4/ is chosen to be positive if d
is odd or if v = 7/ - Q*? ¢ Q" and is negative otherwise. Therefore

[poe ={yel(@2%): v/ el-Q** nK:>"}. (11)
It was observed in [12, Corollary 1] that, for 2% | m,

if TCQb then Tpoe ={y€T(2%[2]:0(7) | m}. (12)
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In fact, if I' € Q" and 4/ € T'(2%)[2], then ' = 7(2)071 and () = discQ(y/70)
divides m if and only if 4/ € K" (see for example Weiss [17, page 264]).

Furthermore, if & = 0, then f‘m,l is the trivial group and in [1, page 124, (24)]
it was proved that if « = 1 then,

if m is squarefree then f‘m’g ={y eT(2):disc Q(W) | m
and discQ(y/9') = 1(mod 4)}.

Note that for 4 { m, the condition disc Q(v/7’) = 1(mod 4) above is irrelevant
as it is implied by the condition that disc Q(v/4’) | m. Hence, for m square free,
the formula in (13) and that in (12) coincide.

Our first task is to extend the above formula for T m,2 in the case when m is
not necessarily squarefree.

(13)

Proposition 4. Let I' C Q* be a finitely generated subgroup, let m € N be even.
Then

Lo = {y € T(2) : discQ(v/7') | m}

Although the proof of the Proposition is the same as the proof of Corollary 1
in [12], we add it here for completeness.

Proof of the Proposition. Let us start from the definition (11):

Tpo={yel(?2): ~ el-Q*nK:’},

where K,, = Q((n).- If+' €T - Q*? is a squarefree integer, then 7/ € K;f if and
only if v/4" € K,,,* and this happens if and only if disc Q(v/97) | m (see for example
Weiss [17, page 264]). This completes the proof. |

We have the general

Lemma 1. Let I' C Q* be a finitely generated group. Let m € N and let o € N,
a # 0 be such that 2% | m. Finally, we set

Tge ={y€T(2)[2]: v C Q",6(y) | m}

and

p- _Jirer@mRl:y £Q7,6(y) | m} if 2041 | m
Ty eT@M[2] iy E QYL 6(y) | 2m but 5(v) fm} i 2%m

20471

where, if ' = +v5 , 6(7) := disc(Q(y/70). Then

_ 7t
e = Fm,Z“

ul-

m,2%"
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The proof is, in spirit, the same as the proof of [15, Lemma 4].

Proof. We start from the definition:
[poe ={y€T@2%: v/ el-Q** nK:>}.

Suppose first v = 7/Q*?" c QF with 4/ € N, 2°power free and that 2/~ €
Q(&m)- Then Q( 3y/97) is a Galois, real, extension of Q and this can only happen
if its degree over Q is at most 2. Hence ' = 730471 for some square free 79 € N, so
that 6(y) = discQ(y/70) | m and v € T'(2%)[2]. Hence v € Fj,'ﬂa.

Next suppose that v = 7/Q*2" ¢ Qf, v € Z and v/ < 0. The condition
v e K;;Qa implies that 72 € K:‘,LQQH is positive. Therefore, by the argument
above, 72 = 2" for some square free 7o € N. Finally v = —73“‘1 € K;"fa.

From this property we deduce that

VA =evo € K,

for some primitive 2*T1-root of unity . We need to distinguish two cases: 20T | m
or 2%||m.

If 22! |'m, e € Ky, So /70 € K, which is equivalent to §() | m.

If 2%||lm, € € Kom \ K- /Y0 € Kom \ Ky, which is equivalent to d(7) | 2m but
5(7) 1 m.

This discussion proves that

Lpge ST 50 U oo

Viceversa, suppose that v € f‘j;zu U f‘fn’Qu and that v # Q**". Then v =
+42"7'Q*?" and the condition §(7) = disc Q(y70) | m is equivalent to /7o € Kp,.

Finally, if v € f‘;;’w, v = ’yga_l = (\/%)2a € K% and hence v/ € Q**" N
K#%" so that f,"n;,QQ C Do, while if v € f:ngaa v = —fy(%Wl = (e 70)2(1, for
some primitive 2%+!-root of unity «.

If 201 | m, then ¢ € K7, and hence 7/ € T-Q*2 NKZ, " so that f‘;yza C Tynga.

Suppose 2%||m. If v € f:mza, then 7/ = —2" ' and y2 = 2" = (/=70)2" " €
K2 since the condition §(7) | 2m but 6(y) { m implies that /=7, € K7,
Therefore either 4/ € K% or —y' € K%?" . If it was that — = ’yga_l e Kx*
we would deduce that /40 € K, and this would contradic §(y) { m. Finally
¥ €T Q" NK}.> sothat T, 5o C Dipgo. [ |

Remark. Let vy € N be square free and suppose that 2||m. Then the condition
disc(Q(v/—=70)) | m is equivalent to disc(Q(y/70)) | 2m and disc(Q(\/0)) { m. In
fact with the given assumption on vy and m, disc(Q(y/—"70)) | m if and only if vy =
3 mod 4 and 7o | m/2 so that disc(Q(y/70)) = 470 | 2m and disc(Q(\/70)) = 470 1
m. This explains why the formula in Lemma 1 reduces to the one in Proposition 4
in the case when a = 1.
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3. Proof of Theorem 1

Let us start by writing m = 2v2(")p, with 2 {n and note that

_ (k) MR ’fm’“”"z’”
p(l';m) = Z [Q(Cone, Fl/mk) : Q] B Z p(mk) |T(mk)]

k>1 k>1

‘F2u+u2(m.)nk gatvy(m)

( oz
= aio L,O 2a+v2(m) ‘F 2a+uz(m) ‘ Z nk |F(nk)|
i M(2a—112(m)) Z (k) ‘f;—ank’za N k) ‘f;ank,za
a=vs(m) SO(ZO() |F(2a)| k?1 Sﬁ(nk) ‘F(nk” kfl QD(TL]C) |F(TL,I€)|
2tk Uk

0 (2a—v2(m))

_ p
-2 p(2) [T(2%)] 2, 2 nk \1“ nk)|

a=vaz(m) yel(29)[2] k>1,2tk
7CQ+ 5(V)[2%kn

p(k)
+ S o SV
'yel‘; )[2] k>122+k p(nk) |L'(nk)|
YZQT  s(v)[2tkn
S(y)12%kn

Lemma 2. Suppose that § is a squarefree odd integer, that n is an odd integer
and set:

Arin = ST XH( e}?%@&xﬁg(l_m)'

Then the following identity holds

|Z+ SR ]~ A 1;[ GO/

Proof. Observe that § | kn if and only if d := §/ ged(d,n) | k. If we write k = dt,
then ged(d,n) = ged(d, t) = 1, so that p(ndt)|T'(ndt)| = o(d)|T'(d)| x ¢(nt)|['(nt)|
and

pk) pu(dk)
2 CERITGR] T 2 OO

k>1,2tk t>1,
5lkn ged(t,2d)=1
I S/ 7 OF: () Y]
e(m)[L(n)]  @(d)|T(d)] 5 ecdmt)e(t)I(nt)]

ged(t,2d)=1
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where we used the identity o(tn) = o(t)@(n) ged(t, n)/o(ged(t, n)). Since L0

is a multiplicative function of #, the above equals: o
= T Fe 1l O )
- so(n)\lr<n>| < 'S (1= 7). 11 =)
= i J}( )
= Ar, X ]; W

i

From Lemma 2, we deduce that

204—1}2(771)
A= 3
vz (m)<agvz(m)+1

ZHW+ > H—|_1

VGF(QQ (2] £16(v) Yel(2%)[2] £]5(v)

ycQt H2n ’YSZQ “H2n
v2(6(7))< v2(6(y))=a+1
[T (m2)|
= Ar., Brm, — ———==—Bram
T ( B 2m) [P 2my)]
where
B _ - - 14
rn= 2 1l g _1|p =1 14
wer(m)flf(v
and

) = {v e Toma)2s Jf7 5 &0 pren 200N < mi )

Note that in the product in (14), the position £ { 2m is equivalent to £{m. In
fact, when m is odd, then necessarily, for v € I'(m), d(v) is also odd.

4. The case I' = (—1,a) with a € QT \ {0,1}

In this section we consider the special case when T' = (—1,a) with a € QT \
{0,1,—1}. The rank of ' is 1 and we write a = a} with ag € QT not an exact
power of a rational number. Further we write ag = aja3 where aj,ay € QF are
uniquely defined by the property that a; € N and a; > 1 is square free. We have
the following;:
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Theorem 4. With the above notation, let

1
A= H (1 - 62—6) = 0.373955813619202288054 . . .
¢

be the Artin Canstant,

(16)

(m, h 2 —2
p((=1,a),m) = HEZ—E—I gz_g_l
£]2m
| Z)[2m
£+1 (4, h)
—— | 1+ Tum —— | A
I =+ H@—ﬁ—(z,h)
£|2m L)ay
ve(m/h)=0 H2m
where
0 if va(h) > va(m), or
if va(h) = va(m) =0 and 2 | hay;
—3 if va(h) =v2(m) =0 and 2t hay, or
Ta,m = if va(h) = va(m) > 0, or
if va(h) < wa(m) =1 and 2| hay;
1 if va(h) < wa(m) =1 and 21 hay, or
if va(h) < wa(m) #1
Proof. For m € N (see [13, equation (5) page 6]) we have
*MM *M m
(~La)(m)] = (-1 e/ =
Hence A(_1 4y,m, as in Theorem 1, equals
2 _ —
(m, 2)p(m?) frrvel (L—1)¢ i -1
elh
1 1
X H <1 - g) X H (1 - €2> .
>2 £>2
Llm Llm
ve(h/m)>1 ve(h/m)<0
We recall that
{1} if 2t m;
{y€T(2):9 =1mod 4} if 2||m;

—1,a)(m) =
< )(m) {y € T(4) :either v/ = 2,2 y0 or v = —2,2 | v} if 4||m;

'(m2)[2) NQT if 8 | m.

” 11
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Furthermore, if @ € N, then

*2% _ %29 2=l ~ 2% _ o=l 2% .
Lo = § @7 Qe el ) i n(h) <a
{Q*,-Q" } if va(h) > a.
Therefore, if va(m) =1,

o B {(@*2} if 2 | haq;
hatm = {{@*Qa (32) @) 21ha,

if va(m) = 2,
. {Q% if 41 h;
(—1,a)(m) = {{Q**,a3Q*"}  if2fa; and 41h;
{@*4, —G%Q’A} if2|ay and4th

and if & = vo(m) = 3,

»2° if vg > va(m
<—1,a><m>={{Q : Fua(R) > va(m)

{Q*2",a2" 7 Q%) if va(h) < va(m).

From this, we deduce that

B(—l,a),m = Z H

~E(—TL,a)(m) 40 (=11, >( =1

_1+smaH€2_£_’ o0

42m Z)(Qm
where
0 if Vo (m) < V2 (h),
Em,a = 0 if 2Hm and 2 | hal;
1 otherwise.
Therefore
B _ <_1a Cl> (mQ) o
a2 m) (<1, a) (2mg) A
- g ons) I Lh Xsm,a—%ﬁiﬁsm
C ,mo

Z{’Qm
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Finally
c _ ged(h,2ma) ) 0 if ’Ug(m) < Ug(h);
_ M dged(h,m2) " ™Y ) —goma ; —
Tm,a = 1_ ng(h,an,g) == | 623 '_ if ’U2(m) = 'UQ(h)
4 ged(h,m2) Em‘a352m,a if ’Ug(m) > ’Ug(h);
0 if va(h) > va(m), or
if va(h) = va(m) =0 and 2 | hay;
—% if va(h) = va(m) = 0 and 21 hay, or
= if va(h) = wva(m) > 0, or
if va(h) < wa(m) =1 and 2| hay;
1 ifve(h) <wve(m)=1and 21t hay, or
if va(h) < va(m) # 1;
and this concludes the proof. |

5. The vanishing of p({(—1,a), m) and the proof of Theorem 2
In this section we consider the equation:
p({—1,a),m) =0.

In virtue of Theorem 4, we deduce that for every a € Q1 \ {0,1} and m € N,
p({(—1,a), m) = 0 is satisfied if and only if:

*(67 h)

am:1 a,m o, 7, 1\ Y.
Co, + Ta, pfz—ﬁ—(ﬂ,h) 0
tf2m
Furthermore, for ¢ odd,
en
02 —(—(0h)

and the equality holds if and only if £ = 3 | h. Hence the equation C, ,, = 0 is
equivalent to: 7., = 1, 3 | h and 3 is the only odd prime that divides a; but it
does not divide m. This happens exactly in one the following cases:

3‘h73+m33|a17a1‘3m5 2*ha2”m72)fa17

or

3| h,3tm,3]|ay,ar | 3m, va(h) < wa(m) # 1.

Proof of Theorem 2. From the above discussion, it is clear that p(_1 qym =0
is satisfied if and only if one of the above properties is satisfied. In all other cases
P(~1,a),m 7 0. So, on GRH by [13, Theorem 1], there are infinitely primes p such
that [IF; (=1,a),] =m.
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Suppose next that a, m are such
3| h,3tm,3]|a1,a;|3mand 2 |m

and let p be a prime number such that [IF; : <71,a>p] = m. From the fact that
2 | [Fp:(=1,a)p] we deduce that —1 and a are squares in Fp* and that
p = 1 mod 2m. Furthermore, if £ > 3 is any other prime that divides a;, then
¢|m | p— 1. So, by quadratic reciprocity,

(©)-0-()-

If the first of the properties in the statement of Theorem 2 is satisfied, then,
since 2 { h, also a; is a square in 7. The property that 2 { a; implies that every

¢ | a; is such that (f;) = 1. Thus

2)-G)0-6),1,6-6)-
D p p p Clar 043 p p
This implies that p = 1 mod 3. Hence both —1 and a are cubes in Ff; which implies
that 3 | m and this is a contradiction.
In the case when a, m are such that the second properties in the statement of

Theorem 2 is satisfied we let p be a prime such that [FZ 2 (-1, a)ﬂ = m. Then,
since va(h) < vo(m) and m | p — 1,

h/hs bt ho+1
a a p—1 1 p—1m/2"2
(1> = (0> =al/" 7 = a7t = o5 =1 mod p.
p p

So again a; is a square modulo p. Furthermore, since ve(m) > 2 and p = 1 mod 2m,

then 8 | p — 1. Thus
()
- =1
p

Finally, a similar argument as above shows that (?) =1land 3| p—1. Again both

—1 and a are cubes in Fg which implies that 3 | m and this is a contradiction. W

6. The vanishing of p(T', m)

Proof of Theorem 3. We start from the identity

Tl g,
(2,m)|T(2me)[ 7"

It is easy to check, by the definition in (3), that A(T',m) # 0 for all m and all T.
So, the equation p(I',m) = 0 is equivalent to

D)
Brm = o)L @my)]

p(T,m) = A(l',m) (prm —

Br om. (17)
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1. If 24 m, then Br,, =1 and |[I'(ms2)| = 1. So the identity in (17) specializes

to
|F(2>| = Broaom = Z H w (18>

~vel'(2m) 4\5
m

Note that, based on the hypothesis that disc(Q(y/g)) | m for all g € T, we
deduce that disc(Q(,/g)) = 5(gQ*?) = 1 mod 4. Hence each of the products
in (18) is empty. Finally T'(2) = I'(2m) so that the identity in (18) is satisfied.

2. Next assume that the condition in 2. is satisfied. We claim that Br,, =
Br .2, = 0 which implies that (17) is an identity. Observe that, if v; € T'(mn)
is as in the statement, then

-1 -1
[] = =—1.
- 1T -1 2T -1
iy € DTN TG)

Therefore, since I'(m) is a group, 3 { m and 3 \ d(y1) if and only of 31 4(7),

- > T Grgr P

~y€L(m) £6(v17)
“42m

which immediately implies that Br,, = 0. We observe that, if v; =
+ m2/2@*m2 then 7o = 7"2Q*?™2 € T'(2my) since it satisfies 3(71) = 6(72)

and va(72) < v2(2m). So, by the same argument, we deduce that Br o, = 0.
3. By the remark after the statement of Theorem 3, the third condition implies

that Br,, = 1 and |I'(mg)] = 2. So, identity (17) reduces to Br o, =
IT'(2ms)|. The hypothesis that T'(4) = I'(2m) and that, for every v € T'(2m),
0(7) | 4m, implies that

-1
II—+—=1
{—1 —

AL oo
H2m

so that Br g, = [T'(2m)| and identity (17) is satisfied. [ |

Proof of Proposition 1. If I" = (g), then 3 | & if and only if I'(3) is trivial and
that va(h) is the largest o such that I'(2%) is trivial.

To analyze precisely the special case when I' = (g), g = :I:gg with gg # 1 not
the power of a rational number, we observe that #I'(m) = m/ ged(m, h) and

{Q*mz,ggw/z(@*m"’} if g > 0 and vy (m) > va(h), or

if g < 0 and va(m) > va(h) + 1;
{Q*™2, —9?2/2(@*7”2} if g <0 and va(m) = vo(h) + 1;
{Q*™2, —Q*™?} if g < 0 and va(m) = vo(h);
{Q*™2} if g > 0 and va(m) = va(h), or

if vo(m) < va(h).
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. If2tm and for all v € ', disc(Q(y/7)) | m, then, in particular disc(Q(,/g) | m

which is the first property in Lenstra’s Theorem.

. It 3] 6(g) | 6m, then v2(d(g)) < vz2(m) + 1. Thus

Q2,05 *Q ™) if g > 0,02(8(9)) < va(m)
and va(m) > va(h), or
~ it g < 0,03(6(9)) < va(m)
I'(m) = and va(m) > va(h) + 1;
{@ 2, —gy Q™) ifg <0
and v2(8(g)) — 1 = va(m) = va(h) + 1;
{Q*"2} otherwise.

(19)
Note that, in order for vs(d(g)) — 1 = wa(m), necessarily vo(m) = 1 of
va(m) = 2 and in the latter case 2 | go. The condition 3 | d(g) | 6m which
implies:

disc(Q(v/—3g0)) | m in the first case of (19);
disc(Q(v/3g0)) | m in the second case of (19), with ve(m) =

1
disc(Q(+/—6g0)) | m in the second case of (19), with ve(m) = 2.

We conclude that the second case of Theorem 3 specializes, in the case I' =
(9), the following cases of the Theorem of Lenstra.

2. |ifg>0

3. | if g <0, va(m)=1and va(h) =0
5. | if g <0, va(m) =2 and va(h) =1
6. | if g <0 and va(m) > va(h) + 1.

. The third property in the above statement means that. every element v €

I'(4) is either of the form 73@*4 or —473@*4 with 79 | m odd and square free

and at least one of them is of the second form. Hence, necessarily, g = —g2
with go even, not a fourth power and v2(go) odd. This implies that 2||h and
that disc(Q(1/2g0)) | 2m. [ |

Proof of Proposition 2. Assume that 2 { m and p(I',m) = 0, then by (17),

IT'(2)| = Br,2m. Furthermore

|Br2m| < [T'(2m)| < [T'(2)].

This implies that T'(2m) = T'(2) and that for every v € T', ¥/ = 1 mod 4 and

-1
II+—s7—=1
AL T
2m

Thus 6(y) | m for all v € I'(2). Hence the property in 1. holds for I' and m. W


lukas
Podświetlony
Could you please clarify this sentence as now its meaning is not clear for me. 
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Proof of Proposition 3. Suppose that I' and m satisfy the first condition in
the statement of Theorem 3. Let p ¢ SuppI' be such that |I')| = (p — 1)/m,
then p = 1 mod m and by, quadratic reciprocity, for all g € T, since 6(gQ*?) | m,

(%) = 1. Hence I'), C FF} is contained in the subgroup of squares which implies

that 2 | m, a contradiction.

Next suppose that I' and m satisfy the second condition in the statement of
Theorem 3. First note that, if p & SuppT is a prime such that |T'y| = (p — 1)/m,
then p = 2mod 3 since 3 { m and since all elements of ' are perfect cubes.
Furthermore the hypothesis m even implies that all elements of I', are squares
modulo p. Let 4, € T'(m) be such that 3 | §(y1) | 6m. Then

()-(5)-C) (52)

which is a contradiction to the property that all the elements of I" are squares
modulo p.

Finally suppose that I' and m satisfy the third condition in the statement of
Theorem 3. Let —478(@*4 € T'(4) with 79 odd and square free as in the Remark
after the statement of Theorem 3. Since 2||m, —4+2 is a square modulo p. Hence
p = 1 mod 2m. We have also that p #Z 1 mod 4m, otherwise the quartic symbol

OG-

since 9 | m. Furthermore vy | m also implies, by quadratic reciprocity, that

(ﬁ) = 1. Hence the Legendre symbol:

P
(2) - (2) -1
p p
if and only if p = 1 mod 8 (since p Z —1 mod 4). Thus we have a contradiction. W

7. Numerical Examples

In this section we compare numerical data. The density pr, can be explicitly
computed once a set of generators of I' is given. The tables in this section have
been computed using Pari-GP [14].
The first table compares the values of p(_1 4, as in Theorem 4 (second row)
and
T(—1,q) (10899719603, m)

m(10899719603)

(first row)

with @ = 2,...,21, m = 1,...,20. All values have been truncated to the first
decimal digits.
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Next table lists the first few values of a (first raw), its factorization (second

raw) and m (third raw) such that p((—1,a),m) = 0.

216000

603
10

185193
573
38

132651

34

110592

28

59319 | 74088

66

35937 | 46656

333
22

30°
20

19683 | 27000

13824
943

9261
218
14

15%
10

1728 | 3375

36

63

27| 216 | 729

33

a

m

Next table compares the values of pr ,, as in Theorem 1 (second row) and

7TF(1010, m)

(first row)

7(1010)

.,20. All values have been truncated to

for some groups I' of rank 2 and m =1, ..

the first decimal digits.

£95502000°0 | LFF60T000°0 | 609€S8000°0 | £08ESTO00°0 | £€6472000°0 | TE6£92000°0
168%02000°0 | 068601000°0 | 666878000°0 | 662£ST000°0 | 1994FL000°0 | T16£93000°0 | (—‘C—)
£95502000°0 | TFELOTO00°0 | ZESGIE000°0 | 9FROSTO00°0 | £E6L7L000°0 | L6856£000°0
99250%000°0 | Z8¥.0T000°0 | TFFFIL000°0 | 6.20ST000°0 | 2589¥2L000°0 | 86196£000°0 | (£‘C—)
£95502000°0 | LFF60T000°0 | 609€S8000°0 | £08ESTO00°0 | £€6L7L000°0 | TE6£92000°0
£80502000°0 | 62860T000°0 | S8ETS8000°0 | F6ZEST000°0 | 12ELFL000°0 | G¥SE92000°0 | (68— ‘2)
£95502000°0 | TFEL0T000°0 | ZE8GIE000°0 | 9FSOSTO00°0 | £E6LFL000°0 | L68S6£000°0
£8950Z000°0 | 8€9.01000°0 | TFFFIL000°0 | STE0STO00°0 | 960LFL000°0 | 86T96£0000 | {£‘T)
2e86£2000°0 | ¥829ZT000°0 | ZESGIL000°0 | GIFLLI000°0 | LIGELEODO'D | L68S6E000°0
82£6£2000°0 | SGE9ZT000°0 | TFFFIL000°0 | £88941000°0 | PZTELE000°0 | 86196800070 | (€T ‘T—)
0T 61 ST L1 91 1 w\
61990000 | 90S€0000 | 69%200°0 1820000 | S8T6T000 | SS.60000 | ¥E€86500°0
0159000°0 | L0S€000°0 | L9%Z00°0 885000°0 | 98T6T00°0 | LGL6000°0 | 2086000 | {&—‘c—)
18690000 | 6€¥E0000 | 69¥200°0 9150000 | 99502000 | €€9FTO00 | ¥E86S00°0
GL69000°0 | 9E¥€000°0 | 69%200°0 950000 | 8¥S0Z00°0 | €09¥100°0 | 2286000 | (€‘z—)
61S9000°0 | 90S€0000 | 69%Z00°0 186000°0 | S8T6TO00 | SSL6000°0 | TES6500°0
6059000°0 | S0SE0000 | 69%200°0 8850000 | 0LI61000 | €£.60000 | 16869000 | (¢—‘2)
18690000 | 6€FE000°0 | 69%200°0 9.5000°0 | 99602000 | €€9FTO00 | FE86S00°0
£869000°0 | SEPE0000 | 89%Z00°0 11800000 | £950200°0 | £09¥T00°0 | S8E86500°0 (g‘)
T6L2000°0 | 9FOF0000 | 0882000 8190000 | gEg80000 | €€9FTO00 | LTI66T00°0
68.2000°0 | €FOF0000 | 6182000 690000 | LTZS0000 | €09¥T00°0 | 20662000 | {gz‘1—)
vI el 4 1 01 6 8 w\ I
GT0ZFT00°0 | FLP0EZ0'0 | ST9TL00°0 | LPIS0Z00 | 668£920°0 TLVI6T°0 SLTTTLO
I88TFZ00°0 | 82S0£T0'0 | 69TTL00°0 | SFIS0Z0'0 | 0ZFE9IZ00 TLVI6T0 L8TT1L0 | {e—‘c—)
19€4€200°0 | ¥L48600°0 | 01686900°0 | LFIS00°0 | 66096£0°0 | LFTS0E0 1064690
82¢L€T00°0 | TLLS600°0 | $L066900°0 | SETS0Z0'0 | GLTIS6E0°0 | SPISOZ0 605269°0 (g‘c—)
610272000 | ¥L¥0£200 | G1921L00°0 | LPIS0Z00 | 668£920°0 TLVI61°0 QLITTLO
1681F200°0 | 0870£20°0 | T98TTLO00 | STIS0T0'0 | L9FE9Z0°0 | 9L¥I6T0 TSTITL0 (e—‘2)
19€L€200°0 | ¥228600°0 | 0T686900°0 | LFIS0Z0'0 | 66096£0°0 | LFPTS0Z0 106L69°0
TGTLEZ00°0 | 22286000 | TE€686900°0 | €2IS00°0 | GLISAE00 | €91S0E°0 G05269°0 (g‘e)
8726LT00°0 | FLLS6000 | 8¥2TZ800°0 | 6££6£20°0 | 66096£0°0 | 62028070 065028°0
1606.200°0 | 2.28600°0 | 18€2g800°0 | ¥PTE6ET0'0 | GLIS6E0°0 | 090Z80°0 9650280 | (£‘C‘1—)
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8. Conclusion

The main question that remains open is whether the sufficient conditions of
Theorem 3 for p(I';m) = 0 are also necessary. Furthermore, in the present pa-
per we did not address the problem of how to efficiently compute p(I', m). This
will be the topic of a coming paper in [9]. Finally, in another paper [10], we shall
propose formulas for the density of the primes p for which m | #I', where m and
I" satisfy the same properties of the present paper.
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