
Functiones et Approximatio
** (202*), 1–9
doi: 10.7169/facm/1866

ON THE NUMBER OF DIVISORS OF THE LEAST COMMON
MULTIPLES OF SHIFTED PRIME POWERS

Florian Luca, Francesco Pappalardi

Abstract: In this paper, we give the order of magnitude for the summatory function of the
number of divisors of the least common multiple of pi − 1 for i = 1, 2, . . . , k when p 6 x is prime.
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1. Introduction

In this paper, p is a prime number and τ(n) is the number of divisors of n. The
Titchmarsh divisor problem is the upper bound∑

p6x

τ(p− 1) = O(x)

proved by Titchmarsh in 1930 (see [9]). Since then, many authors found asymptotic
expressions for the left–hand side above (see [5], [1]). In [7], it was shown that∑

p6x

τk(p− 1) �k x(log x)k−2,

where τk(n) = #{(a1, . . . , ak) ∈ Nk : a1 · · · ak = n} is the coefficient of 1/ns in the
expansion of ζ(s)k.

We recall that the notation A � B means that both A = O(B) and B = O(A)
hold. The subscript (if present) indicates that the implied constants in the above
O depend on the parameter from the subscript. For k = 1, τ1(n) = 1 and for k = 2,
τ2(n) = τ(n).

In this article we look at the least common multiple of pi − 1 for i = 1, . . . , k
and of pi + 1 for i = 1, . . . , k and we give upper and lower bounds for the average
number of divisors of these expressions when p ranges over primes in [1, x].
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Theorem 1. We have the following estimates:∑
p6x

τ(lcm[pk − 1, pk−1 − 1, . . . , p− 1]) �k x(log x)k−1,

∑
p6x

τ(lcm[pk + 1, pk−1 + 1, . . . , p+ 1]) �k x(log x)k−1,

as x→∞.

Our results might have some practical applications to other areas. For example,
the number of divisors of pk + 1 is related to the number of reduced Egyptian
fractions of length 2 with denominator pk (see [6] and [2]), whereas the number of
divisors of lcm[p− 1, . . . , pk − 1] is related to the exponent of the group GLk(Fp)
of invertible k × k matrices with entries in the finite field with p elements.

2. The proof

We prove only the second estimate since the first one is similar (and slightly easier).
Let

Ik := {2i+ 1 : 0 6 i 6 (k − 1)/2} ∪ {4i : 1 6 i 6 k/2}.

For example, for k = 5, we have I5 = {1, 3, 4, 5, 8}, so #I = 5. In general, #Ik =
(1 + b(k− 1)/2c) + bk/2c = k. We omit the dependence on k in the set Ik and just
write I.

We start with some considerations about the lcm. Note that if i is odd then
Xi + 1 = −((−X)i − 1), while if i is even then Xi + 1 = (−X)i + 1 = ((−X)2i −
1)/((−X)i − 1). Hence,

Xi + 1 =


−
∏
d|i

Φi(−X) if i ≡ 1 (mod 2),∏
d|2i
d-i

Φd(−X) if i ≡ 0 (mod 2).

Here, Φm(X) is the mth cyclotomic polynomial. It follows that if we write:

lcm[pk + 1, pk−1 + 1, . . . , p+ 1] = ±δ−1k
∏
i∈I

Φi(−p),

then δk ∈ N is a divisor of ∏
i,j∈I
i6=j

gcd(Φi(−p),Φj(−p)).
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Since
gcd(Φi(−p),

∏
j<i

Φj(−p)) | i,

(see Lemma 6 in [8]), it follows that

δk | (k!)2.

Therefore, if we set:
fk(X) =

∏
i∈I

Φi(−X),

we have that

τ(lcm[pk + 1, pk−1 + 1, . . . , p+ 1]) �k τ(fk(p)).

The lower bound

Let A := Ak be some number depending on k to be determined later. We have∑
p6x

τ(lcm[pk + 1, pk−1 + 1, . . . , p+ 1])

>
∑

m6x1/3

µ(m)2=1

τ(m)6(log x)A

∑
p6x

lcm[1+pk,1+pk−1,...,1+p]≡0 (mod m)

1

=
∑

m6x1/3

µ(m)2=1

τ(m)6(log x)A

k(m)∑
i=1

π(x,m, a∗i )

=
∑

m6x1/3

µ(m)2=1

τ(m)6(log x)A

k(m)π(x)

φ(m)
+ E,

where

E =
∑

m6x1/3

µ(m)2=1

τ(m)6(log x)A

k(m)∑
i=1

∣∣∣∣π(x,m, a∗i )−
π(x)

φ(m)

∣∣∣∣ .

In the above, a∗1, . . . , a∗k(m) are all the residue classes modulo m representing so-
lutions p to the congruence fk(p) ≡ 0 (mod m). To understand k(m), we note
first that it is a multiplicative function. So, let q > k be a prime. We need to
understand kq, which is the number of solutions modulo q of fk(X) ≡ 0 (mod q).
First, let us note that the solutions coming from Φi(−X) ≡ 0 (mod q) and
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Φj(−X) ≡ 0 (mod q) are distinct for i 6= j in I. Indeed, if they are not, then
Φi(−X) and Φj(−X) have a common root modulo q. This leads to a double root
of (−X)ij − 1 (mod q). Any double root of (−X)ij − 1 (mod q) is a root of its
derivative −ij(−X)ij−1 (mod q) and this is not zero since q > k > max{i, j}.
Furthermore, 0 is not a root of Φi(−X) (mod q) or Φj(−X) (mod q). Thus, in-
deed Φi(−X) and Φj(−X) have no common roots modulo q. Now since the group
of invertible elements modulo q has a primitive root ρq, it follows that Φi(−X)
has roots modulo q if and only if 2i | q − 1, and in this case it has exactly φ(2i)
such roots. They are exactly the residues −ρ((q−1)/2i)λ (mod q), where λ ∈ [1, 2i]
is coprime to 2i. Thus,

k(q) =
∑

2i|q−1
i∈I

φ(2i).

Clearly, k(q) 6 (2k)2. This is for q > k. This shows that

k(m) 6 (2k)2ω(m) �k τ(m)ck ,

where we can take ck := 2 log(2k)/ log 2. Since τ(m) 6 (log x)A, we get that
k(m)�k (log x)Ack . An application of the Bombieri-Vinogradov Theorem

∑
Q6x1/3

max
a mod Q
y6x

∣∣∣∣π(y,m, a)− π(y)

φ(m)

∣∣∣∣�B
x

(log x)B
,

shows that

E =
∑

m6x1/3

µ(m)2=1

τ(m)6(log x)A

k(m)∑
i=1

∣∣∣∣π(x,m, a∗i )−
π(x)

φ(m)

∣∣∣∣�B
x

(log x)B−Ack
�k,A

x

(log x)2
,

provided we choose B := Ack + 2. It remains to deal with the main term. This is

π(x)
∑

m6x1/3

µ(m)2=1

τ(m)<(log x)A

k(m)

φ(m)
= π(x)

∑
m6x1/3

µ(m)2=1

k(m)

φ(m)
− π(x)

∑
m6x1/3

µ(m)2=1

τ(m)>(log x)A

k(m)

φ(m)
. (1)
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The first sum is, by a Tauberian theorem (see Theorem 4 in [4]),

π(x)
∑

m6x1/3

µ(m)2=1

k(m)

φ(m)
= Ck(1 + o(1))π(x)

∏
q6x1/3

(
1 +

k(q)

q − 1

)

�k π(x) exp

 ∑
q6x1/3

k(q)

q
+O

∑
q>1

k(q)

q2


�k π(x) exp

 ∑
k<q6x1/3

∑
i∈I

2i|q−1
φ(2i)

q
+Ok(1)



= π(x) exp

∑
i∈I

φ(2i)
∑

k<q6x1/3

q≡1 (mod 2i)

1

q
+Ok(1)


= π(x) exp

(∑
i∈I

φ(2i)

(
log log x1/3

φ(2i)
+Ok(1)

))
�k π(x) exp (#I log log x)

�k x(log x)#I−1 �k x(log x)k−1. (2)

The second sum is

Ok

π(x)
∑

m6x1/3

µ2(m)=1

τ(m)>(log x)A

τ(m)ck

φ(m)

 .

To estimate this, we proceed as follows. First,

∑
m6x1/3

µ(m)2=1

τ(m)ck

φ(m)
6

∏
q6x1/3

(
1 +

2ck

q − 1

)

�k exp

 ∑
k<q6x1/3

2ck

q
+

∑
q>1

2ck

q2


�k exp

(
2ck log log(x1/3) +Ok(1)

)
�k (log x)dk ,
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where dk = 2ck . Thus,

∑
m6x1/3

µ2(m)=1

τ(m)>(log x)A

1

φ(m)
� (log x)dk−Ack .

Hence, by the Cauchy-Schwartz inequality,

∑
m6x1/3

µ(m)2=1

τ(m)>(log x)A

k(m)

φ(m)
�k

∑
m6x1/3

µ(m)2=1

τ(m)>(log x)A

τ(m)ck

φ(m)

�k

 ∑
m6x1/3

µ(m)2=1

τ(m)2ck

φ(m)


1/2


∑

m6x1/3

µ(m)2=1

τ(m)>(log x)A

1

φ(m)



1/2

�k

 ∏
k<q6x1/3

(
1 +

22ck

q − 1

)1/2

(log x)dk/2−Ack/2

�k exp

1

2

∑
k<q6x1/3

22ck

q
+Ok(1)

 (log x)dk/2−Ack/2

�k exp
(
22ck−1 (log log x+Ok(1))

)
(log x)dk/2−Ack/2

�k (log x)d
2
k/2+dk/2−Ack/2.

Choosing A > (d2k + dk)/ck, the last upper bound above becomes Ok(1). Thus,
with this choice, the second term on the right–hand side in (1) is Ok(π(x)). Thus,

π(x)
∑

m6x1/3

µ(m)2=1

τ(m)<(log x)A

k(m)

φ(m)
� x(log x)k−1,

so that ∑
p6x

τ(lcm[pk + 1, pk−1 + 1, . . . , p+ 1])� x(log x)k−1.
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The upper bound

First of all∑
p6x

τ(lcm[pk + 1, pk−1 + 1, . . . , p+ 1])�k

∑
p6x

τ(fk(p))

6
∑
n6x

τ(fk(n))

�k x
∑
m6x

k(m)

m

�k x
∏
q6x

1 +
∑
i>1

k(qi)

qi


�k x

∏
q6x

(
1 +

k(q)

q

)
�k x(log x)#I .

The above calculation is clear except for the inequalities between lines 2 and 3
which follows from Theorem 7.1 in [3] and the inequality between lines 5 and 6
which follows from the calculations performed at the lower bound. So, we only need
to save a factor of one log x and this we will achieve using the fact that the sum
we are interested in is only over primes p 6 x. To do this, we need an inequality
for τ(f(p)). Here it is:

Lemma 1. Let C > 1 be a fixed constant. For all but O(x/(log x)C) primes p 6 x
we either have

τ(fk(p))�
∑

m6x1/2

m|fk(p)

1, (3)

or
τ(fk(p)) 6 O(1)r

∑
m∈Sr:m|fk(p)

1

for some 4 6 r � (log log x)2, where Sr is the set of all m with the following
properties:

(i) m ∈ [x1/8, x1/2];
(ii) m is x1/r-smooth. That is, m is not a multiple of any prime p > x1/r;
(iii) m has at most (log log x)2 prime factors;
(iv) m is not divisible by any prime power pk with k > 1, p 6 x1/4 and

pk > x
1

16(log log x)2 .

Proof. This is Lemma 7.3 in [3] and in fact it holds for any n not only just for
primes. In that lemma, the range for m in (3) is m 6 x (instead of m 6 x1/2)
while in (i) the range for m is [x1/4, x] instead of [x1/8, x1/2], but one can see from
the proof of Lemma 7.3 in [3] that the parameter N there can be replaced by N1/2

which results in the current formulation, and the proof carries through. �
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Armed with Lemma 1, we get that∑
n6x

τ(fk(p)) 6
∑

m6x1/2

∑
p6x

m|fk(p)

1 +
∑

46r�(log log x)2

∑
m∈Sr

m|fk(p)

1 +O

(∑
n∈A

τ(fk(n))

)
,

where A can be taken to be a subset of [1, x] of cardinality x/(log x)C with an
arbitrarily large C. By the argument from the proof of the lower bound, if C
is large enough (say C > dk + d2k + 4), then the last term inside O can be made
O(x/(log x)2). For the first two terms in the right-hand side above, we fixm 6 x1/2
and look at the congruence fk(p) ≡ 0 (mod m). This puts p into k(m) residue
classes modulo m, call them a1, . . . , ak(m). Thus,

∑
n6x

τ(fk(p)) 6
∑

m6x1/2

k(m)∑
i=1

π(x,m, ai) +
∑

46r6(log log x)2

∑
m∈Sr

k(m)∑
i=1

π(x,m, ai)

+O(x/(log x)2).

For π(x,m, ai), we use the Brun–Titchmarsch inequality to deduce that

π(x,m, ai)�
x

φ(m) log(x/m)
� x

φ(m) log x
.

Hence,

∑
n6x

τ(fk(n))� x

log x

 ∑
m6x1/2

k(m)

φ(m)
+

∑
46r6(log log x)2

∑
m∈Sr

1

φ(m)

+O(x/(log x)2).

The first sum above gives

∑
m6x1/2

k(m)

φ(m)
6

∏
q6x1/2

1 +
∑
i>1

k(qi)

φ(qi)

�k

∏
q6x

(
1 +

k(q)

q − 1

)

� exp

∑
q6x

k(q)

q
+Ok(1)

� (log x)#I � (log x)k,

by estimate (2). As for the second sum, the argument on the second half of page
79 in [3] shows that

∑
m∈Sr

1

φ(m)
�k

∞∑
t=1

O(1)rt

brt/100c!

 ∑
x1/(2t+1r)6p6x1/(2tr)

1

p− 1

brt/100c∑
u6x

k(u)

φ(u)

 ,

therefore ∑
46r6(log log x)2

∑
m∈Sr

1

φ(m)
�k

( ∞∑
r=2

∞∑
t=1

O(1)rt

brt/100c!

)∑
u6x

k(u)

φ(u)
�
∑
u6x

k(u)

φ(u)
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and the last sum is O((log x)k) again by estimate (2). This finishes the proof of
the upper bound. For the first sum, the argument is identical except that there
I = {1, 2, . . . , k}.
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