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Elliptic curves over I

Definition (Elliptic curve)

An elliptic curve over a field K is the data of a non singular
Weierstraf3 equation
E:y?+aixy+asy =x3+ ax?+ asx + as,a € K

If p=charK > 3,

1

Afg = 7
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Elliptic curves over K

After applying a suitable affine transformation we can always
assume that E/K has a Weierstra3 equation of the following

form

Example (Classification (p = char K))

E

p | Ae
Y =x*+Ax+B >5 | 4A° 4+ 27B°
V4xy=xP+axP+a | 2 | &
Vday=xtaxta | 2 | a
3~ p2p2
y2=x®+Ax>+Bx+C 3 G =58 =TEAEE

+4B3 + 27C?

Let E/F elliptic curve, oo := [0, 1,0]. Set
E(Fq) ={(x,y) €F2: y? = x3 + Ax + B} U {oc}
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It P,Q € E(Fy), rp.o: line throggh Pand Q ff P#Q
’ tangentlineto Eat P if P=Q,
I'p : Vvertical line through P

Xy +y?+y=x3-3x2+x+1 xy+y?+y=x3-3x%+x+1

o

P /
Fpooo N E(Fq) = {P, 00, P'} o,

rp.0 N E(Fg) = (P.Q.R) w PHeQ:=-R |

Elliptic curves over Fq

F. Pappalardi

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading

24



Theorem
The addition law on E /K (K field) has the following properties:

(@) P+e Qe E VP,Qe E
(b) P+eoo=o00+gP=P VP e E
() P4+e(—P)= VPe E
(d) P+e(Q+eR) =(P+e Q)+ R VP,Q,Rec E
() P+teQ=Q+eP VP,Qc E
So (E(K), +g) is an abelian group.

Remark:

If E/K = VL,K C LC K, E(L)is an abelian group. J

—P=—(x1,y1) = (X1, —a@1xy —a — y1)
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Formulas for Addition on E (Summary)
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E:y2+aixy +asy = X3+ ax? + asx + ap J

Pi = (x1,¥1), P2 = (X2, y2) € E(K) \ {00},
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o |f P1 75 P2
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Further reading

Then

Py +EP2=(,\2—a1/\—ag—X1—Xz,—>\3—a5>\+(>\+a1)(az+x1+X2)—33—l’)J
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Formulas for Addition on E (Summary for

E:y?=x3+Ax+B

special equation)

P = (x1,)1), P2 = (X2, )2) € E(K) \ {0},
Addition Laws for the sum of affine points

° |fP17éP2

e X1 =X
°* X1 £ Xo
—_ Yo—n — NXe—YoXq
L= X2 —Xq V="
o If P1 = P2
e y1=0 =
ey #0
A= 32+A B —Aq—2B
=2 VT 21

Then
Py +e P> = ()\2 — X1 —X2,—)\3+A(X1

Pi+gPe=o0 |

Py +£ P> = 2P; = |

+x2) —v) |
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Notations

Finite fields

® F,={0,1,...,p— 1} is the prime field;

@ T, is afinite field with g = p” elements;

O Fq =Tp[¢], f(§) =0, f € Fp[X] irreducible, of = n;
O F, =TFp¢], € =1+¢;

O Fg = Fafa], o® = a + 1 but also Fg = Fo[3], £° = 52 + 1,
(B=a®+1);
0O Figy100 = F1o1[w],w101 =w+1

Algebraic Closure of Fq

@ Vne N, wefixanFgn

® We also require that Fgn C Fgm it n| m
O WeletFg = Upey For

O [, is algebraically closed

If F(x, y) € Fq[x, y] a point of the curve F = 0, means (xo, yo) € ﬁi s.t. F(xo0, %) =0.
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The j-invariant

Let E/K : y?2 = x3 + Ax + B, p > 5and Ag := 4A3% + 2782,

=2
{X TU Uekr 5 E— Eyry? = XUt Ax+uoB
y+—uly
Definition
The j-invariant of £ is j = j(E) = 1728 ;4=

Properties of j—invariants
© J(E) = j(Eu),Vu € K
® j(E'/K)=j(E"/K) = Juc K*st. E" = E,

if K = Fq can take u € Fgie

©,#0,1728 = E: y2 = x® + i=x+ i, J(E) =
O,=0= E:y>=x3+B, j=1728 = E:y?=x34 Ax
@ j : K «+— {K—affinely equivalent classes of E/K}.
0O p = 2,3 different definition
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Examples of j invariants
From monday £; : y? = x® +1and E> : y? = x® + 2

#E1(Fs) = #E2(Fs) =6 and  j(E) =j(E2) =0 |
X +— 2X
y +— 3y
Definition (twisted curve)
Let E/Fq: y* = x3 + Ax+ B, u € Fj; \ (F3)2.

E; and E, affinely equivalent
over F5[v/3] = a5 (twists)

15y, ¢ y? = x3 4+ 12Ax + 1°B
is called twisted curve.

Exercise: prove that
* J(E) = J(Ey)
e E and E, are IF4[,/u]-affinely equivalent
O #E(qu) = #E#(qu)
o usually #E(Fq) # #E,(Fq)
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Determining points of order 2 Elliptic curves over Fg

F. Pappalardi

Let P = (x1.,y1) € E(Fq) \ {0},

Phasorder2 < 2P=c «<— P=-P J
SO CIMPA

Reminder from

—P= (X1,—a1x1 — a3 —y1) = (X17y1) =P = 2y1 = —aiX; — a J Monday

the j-invariant

If p 7& 2, can assume E : y2 _ X3 + AX2 + Bx + C Points of finite order

—P = (X1,_Y1) = (x1,y1) =P = y = O,)(13 4 AX12 +Bxy+C=0 J Points of fiite order

The group structure

sketch of proof

UEE e
Waterhouse's Theorem
o the number of points of order 2 in E(IF,) equals the Ross Treoren
number of roots of X3+ Ax2 + Bx + Cin I R

e roots are distinct since discriminant Ag # 0
e E(Fg) has always 3 points of order 2 if E/Fq
e E[2]:={PecE(Fy):2P=00} 2 Co® C>



Determining points of order 2 (continues)
elfp=2and E: y? + a3y = x° + axx® + ag
—P= (X1,83+y1) = (X1,y1) =P — a=0

Absurd (a; = 0) and there are no points of order 2.
elfp=2and E:y? +xy = x3 + asx + as

—P=(a,x+y1)=(x,0)=P = x1=0,yf = a

J

So there is exactly one point of order 2 namely (0, \/as)
Definition
2—torsion points

E[2] ={P € E: 2P = xo}.

In conclusion
Co Co ifp>2
E[2) =< C, ifp=2E:y?>+xy=x3+asx+ as
{00} fp=2E:y?+asy=x3+ax?>+as
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Elliptic curves over F,, F3 and Fs

Each curve /F, has cyclic E(F>).

E E(F2) |E(F2)]
V4 xy=x+x%+1 {o0,(0,1)} 2
V2 xy =x°+1 {0, (0,1),(1,0),(1,1)} 4
VP+y=x3+x {0, (0,0),(0,1),(1,0),(1,1)} | 5
Y+y=x"+x+1 {0} 1
y2+y:X3 {%,(0,0),(0,1)} 3

o £y y2=x3+x

Ei(F3) = Cy and

Ep:y?=x%—x

Ex(F3) = Co® Co

J

e E3:y2=x3+x

E(F5) =2 C @ G

Ey: y2=x3+x+2

and

E4(Fs) = C4

)

o E5:y?=x3+4x

Es(F5) = Co @ Cq4

Es:y?=x3+4x+1

and

Es(Fs) = Cs

J
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Determining points of order 3
Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P |

So,ifp>3and E:y>=x*>+ Ax+ B
2P = (Xgp,ygp) = 2(X1,y1) = (/\2 72X1,*/\3 + 2AXx1 — V) J

3x24+A X} —Ax—2B
2y 07 T 2y

where \ =

P has order 3 < Xxop = Xy )

Substituting A, Xxop — X1 =

—3x{ —BAX2—12Bx; +A? _ 0
4(x34Ax;+4B) -

Note
o 13(x) := 3x* + 6AX? + 12Bx — A? the 3" division
polynomial
e (x1,y1) € E(Fg) hasorder3 = 43(x1) =0
e E(F,) has at most 8 points of order 3
o lfp#£3,E[38]:={P€E:3P=c0}=2C;& Cs3
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Determining points of order 3 (continues)

Exercise

Let E: y? = x3 + Ax? + Bx + C, A, B, C € F3». Prove that if
P = (x1,y1) € E(F3n) has order 3, then

O AZ+AC-B2=0
® E[3] = G3if A# 0 and E[3] = {0} otherwise

Example (from Monday)
If E:y?=x3+x+1,then #E(Fs) = 9.
Y3(x) = (x + 3)(x + 4)(x% + 3x + 4)
Hence
ED3) = {oo, (2,£1), (1,%v3), (1 + 23, £(1 + V3))}
0 E(]F5) = {007 (23 +1 )v (Ov +1 )7 (3’ +1 ), (43 :|:2)} = C9
(2] Since Fo5 = F5[\/§] = E[3] C E(F25)
® #E(Fxs) =27 = E(Fas)=C3® Cy
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Determining points of order 3 (continues)
Inequivalent curves /F; with #E(F7) = 9.

E P3(x) E[3] N E(F7) E(F7) =
Pxi2 X(X + 1)(X +2)(x + 4) {(5 Oﬂs)id ¢1)} C oG
¥ =x>+3x+2 | (x+ 2)(x° 4+ 5x° + 3x + 2) {0, (5, £3)} Cy
Y2 =x>+5x+2 | (x+4)(x® +3x% + 5x + 2) {0, (3, £3)} Cy
y2=x"4+6x+2]| (x+1)(x° +6x% +6x +2) {0, (6, £3)} Co

Can one count the number of inequivalent E/IF, with #E(Fq) = r?

Example (A curve over F, = Fy(¢), &% = € + 1;

{OO, (070)v (07 1 )} < E(IF4)
E(F4) = {00,(0,0),(0,1),(1,8),(1,£ +1),(£,€),(§, 6 +1),(§+1,8),(E+ 1,6+ 1)}

We know E(Fy) =

Pa(X) = x* +x = x(x + ) (X + ) (x + £+ 1) = E(F,) =

Cs @ Cs J

E:y?+y=x°)

Exercise (Suppose (X0, yo) € E/F2n has order 3. Show that)

” E:y2+asy:x3+a4x+a6 = Xg+a§XO+(a4a3)2:O

OE: Yy +xy=x3+ax®+a = xj+x3+a =0
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Determining points of order (dividing) m

Definition (m—torsion point)

Let E/K and let K an algebraic

closure of K.

E[m] = {P € E(K) : mP:oo}J

Theorem (Structure of Torsion Points)

Let E/K and m € N. If p = char(K) 1 m,
Elm = Cy,® Cn J

Ifm=p'm ptm,

E[m| = Cy ¢ Cry J

E/F, is called {

ordinary
supersingular

if E[p] = C,
if E[p] = {oo}
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Group Structure Of E(]Fq) Elliptic curves over Fq

F. Pappalardi

Corollary
Let E/Fq4. 3n,k € N are such that

CIMPA

Reminder from

E(]Fq) = Cn D an Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3
Proof. Points of finite order
From classification Theorem of finite abelian group sketch of proof
E(Fq) o~ Cn1 fas) an @@ Cp, Important Results
with nj|nj4 fori > 1. N
Hence E(IFq) contains nj points of order dividing ny. From Focks Theorem
Structure of Torsion Theorem, #E[mn] < n2. So r < 2 [ fererreadns

Theorem (Corollary of Weil Pairing)
LetE/Fgandn, k e Ns.t. E(Fq) = C,® Cn. Thenn| q— 1.

We shall discuss the proof of the latter tomorrow



Sketch of the proof of Structure Theorem of Torsion Points
The division polynomials

The proof generalizes previous ideas and determine the points
P € E(FFq) such that mP = oo or equivalently (m—1)P = —P.

Definition (Division Polynomials of E : y? = x* + Ax + B (p > 3))
o =0
Py =1
Vo =2y
s =3x* + 6Ax® + 12Bx — A
Vg =4y (x® + 5Ax* + 20Bx® — 5A2x? — 4ABx — 882 — A%)

3 3
¢2m+1 :¢m+2¢m - wmq z/’m+1

form>2
Vom = (g;) - (miaPmg — Ym-a¥y) form>3

The polynomial v, € Z[x, y] is called the m" division
polynomial
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The division polynomials
Lemma

LetE : y?> = x3 + Ax + B, (p > 3) and let ), € Z|x, y] the m"
division polynomial. Then

vomi1 €Z[X]  and  dom €2yZ[X] |

Proof is an exercise.

True o, 11, Y2, W3, 14 and for the rest apply induction, the

identity y?2 = x3 + Ax + B--- and consider the cases m odd
and m even.

Lemma

= y(mx(m=4/2 L ...y ifmis even
T mx(m=n/2 4 if m is odd.

2
Hence 12, = m?x™ —1 + ...

Proof is another exercise on induction:

O
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Theorem (E : Y2 = X® + AX + B elliptic curve, P =

wm(va)

- (va) <€ E)
0, 1) — (X_ Pm—1¥m+1 wzm(x,y)> _ <¢m(x

() T 2¢5(x)

)
P2,(X)" (X, ¥)

where

4y

Ymi2¥e_ —Pm_21?,
¢m:X¢m ¢m+1¢m 1,Wm = +2 ! i J

We will omit the proof of the above (see [8, Section 9.5])
Exercise (Prove that after substituting y*> = x® + Ax + B)
@ ¢n(X) € Z[x]
® On(X) = X"+ dm(x)?
9 w2m+1 € yZ[X] Wom € Z[X]
0 3% c yz(x)
O gcd(vh(x), ¢m(x)) =1

this is not really an exercise!! - see [8, Corollary 3.7]

:m2x”72—1_|_...
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Lemma

<m? ifp|m

H#E[m] = #{P ¢ E(K) : mP = oo}{ e "prmJ

Proof.

Consider the homomorphism:
[m] : E(K) — E(K),P +— mP
If pt m, need to show that
# Ker[m] = #E[m] = m?
We shall prove that 3P, = (a, b) € [m]|(E (K )) \ {0} s.t.
#{Pe E(K): mP=Py} =
Since E(K) infinite, we can choose (a, b) € [m](E(K)) s.t.
@ ab+#0
O VxeK: (Dmbm — 20mpm)(X0)m(X0) =0 = a # :;giig;
if p+ m, conditions imply that ¢,,(x) — ay2,(x)

has m? = 9(¢m(x) — ay2,(x)) distinct roots
in fact dgm(x) = m? and 0y2,(x) = m? — 1
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Proof continues.
Write

mP = m(x,y) = (%3, 52640) = (%84, yr(x))
The map

{0 €K : ¢m(a) — abm(a)? =0} » {P € E(K): mP = (a,b)}

ag — (o, br(ag) ")
is a well defined bijection.
Hence there are m? points P € E(K) with mP = (a, b)

So there are m? elements in Ker[m].

If p | m, the proof is the same except that ¢m(x) — aym(x)? has

multiple roots!!
In fact ¢f,(x) — ayly(x)2 =0

O
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From Lemma, Theorem follows:

If pt+ m, apply classification Theorem of finite Groups:

E[m] = Cp, & Cp, & --- Cp,,

n; | niy1. Let £ | ny, then E[¢] C E[m]. Hence
k=1 = k=2.S0

E[m] = Cf71 D an
Finally np | mand nyn, = m? so m= ny = ny.
If p | m, write m= p/m’, pt m’ and
E[m] = E[m']| ® E[p] = Cw @ C @ E[P]

The statement follows from:

E[p] = { 1} and  Cuw @ Cy = Cpip
Cp

which is done by induction.
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From Lemma, Theorem follows (continues)

Elliptic curves over Fq

F. Pappalardi

Induction base:

Efp] = { 1} if follows from #E[p] < p?
Cp CIMPA
« If E[p] = {oc} = E[p] = {oc} V] > 2: I
In fact if E[p] # {0} then it would contain some element PO
of order p(contradiction). Points o fnte order
o If E[p] = Cp, then E[p] = C, Vj > 2: rone o
In fact E[p/] is cyclic (otherwise E[p] would not be cyclic!) he e st
Fact: [p] : E(K) — E(K) is surjective (to be proven tomorrow) | _Impmamsu"s
i PeEandordP=p~' = 3Q¢ Est pQ=Pand s
Q=p.

Further reading

Hence E[p/] = C, since it contains an element of order p'.

Remark:

o E[2m+1]\ {oo} = {(x,¥) € E(K) : t2ms1(x) =0}
o E[2m]\ E[2] = {(x,y) € E(K) : y~"¢2m(x) = 0}




Theorem (Hasse)

Let E be an elliptic curve over the finite field Fy. Then the order
of E(Fy) satisfies

|9 +1 - #E(Fq)| <2V4.

So #E(Fq) € [(vVa -

Example (Hasse Intervals)

1)2,(,/q + 1)?] the Hasse interval I,

q Ig

> 11,2,3,4,5)

3 {1,2,3,4,5,6,7}

4 {1,2,3,4,5,6,7,8,9}

5 {2,3,4,5,6,7,8,9,10}

7 {3,4,5,6,7,8,9,10, 11, 12, 13}

8 {4,5.6.7.8.9,10, 11, 12, 13, 14}

9 {4,5,6,7,8,9,10, 11,12, 13, 14, 15, 16}

11 {6,7,8,9,10, 11, 12, 13 14,15, 16, 17, 18}

13 {7,8,9, 10,11,12 13, 14, 15, 16, 17, 18 19, 20,21}

16 | {9.10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}

17 | {10, 11,12, 13,14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}

19 | {12, 13,14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}

23 | {15,16,17,18, 19,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}

25 | {16,17,18,19,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}

27 | {18,19,20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}

29 | {20,21, 22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}

31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 | {22,23,24,25,26,27,28,29,30, 31,32, 33,34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}

Elliptic curves over Fq

F. Pappalardi

¥
CIMPA

Reminder from

Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order
The group structure

sketch of proof
Important Results
Waterhouse's Theorem
Riick's Theorem

Further reading



Elliptic curves over Fq

Theorem (Waterhouse)
F. Pappalardi

Letg=p"andletN =q+1— a.

JE/Fq s.t#E(Fq) = N & |a| < 2\/q and
CIMPA
one of the following is satisfied:

(i) gcd(a,p) =1;
(ii) n even and one of the following is satisfied:

Reminder from
Monday

the j-invariant

Points of finite order

0 a—= :I:Z\f Points of order 2

’ Points of order 3
9 p#1 (mod 3), and a = if,' Points of fiite order
e p 5_& 1 (mod 4)’ anda — O; The group structure

sketch of proof

(iii) nis odd, and one of the following is satisfied: T —
a p= 2 or 3, and a = :l:p(n+1)/2; Hasse's Theorem
9 a=0. Riick's Theorem

Further reading

Example (g prime VN € Iy, 3E /Fq, #E(Fq) = N. q not prime:)

q . ae

=8 || i N 2),4,51

9=3 | { ,0,1,2,3,4,5,6}

16=2% | { -6 —2 ,0,1,2,3,4,5,6,7,8}

25 =52 | { ,0,1,2,3,4,5,6,7,8,9, }
27=3% | { —6 , -3 ,0,1,2,8,4,5,6,7,8,9,10}
32=2% | { —10 —6, —4 —2 ,0,1,2,3,4,5,6,7,8,9,10, 11}




Elliptic curves over Fq

Theorem (Riick)

F. Pappalardi
Suppose N is a possible order of an elliptic curve /Fq, g = p".
Write

N=p°mn,, ptnny and n | np (possibly ny =1).
There exists E /Fq s.t.

CIMPA

Reminder from
Monday

E(Fq) = Ch, @ Crype

the j-invariant

g . Points of finite order
If and On/y If Points of order 2
Points of order 3
© ni = no in the case (ii).1 of Waterhouse’s Theorem; P of ke order
® ni|q — 1 in all other cases of Waterhouse’s Theorem. sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem

Example

Further readin
o If g=p?"and #E(Fq) = g+ 1+2/G = (p" £+ 1) then g
E(Fq) = Cp”:H D cp”:t1~
e Let N =100 and q= 101 = 3E1, EQ, E3, E4/F101 s.t.
E1(F101) = C10 @ Cio Ex(F101) = C2 @ Cso
E3(F101) = Cs @ Co E4(F101) = Cioo



Further Reading...

)

PP PP PP

IAN F. BLAKE, GADIEL SEROUSSI, AND NIGEL P. SMART, Advances in elliptic curve
cryptography, London Mathematical Society Lecture Note Series, vol. 317,
Cambridge University Press, Cambridge, 2005.

J. W. S. CASSELS, Lectures on elliptic curves, London Mathematical Society
Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991.

JOHN E. CREMONA, Algorithms for modular elliptic curves, 2nd ed., Cambridge
University Press, Cambridge, 1997.

ANTHONY W. KNAPP, Elliptic curves, Mathematical Notes, vol. 40, Princeton
University Press, Princeton, NJ, 1992.

NEAL KoBLITZ, Introduction to elliptic curves and modular forms, Graduate Texts in
Mathematics, vol. 97, Springer-Verlag, New York, 1984.

JOSEPH H. SILVERMAN, The arithmetic of elliptic curves, Graduate Texts in
Mathematics, vol. 106, Springer-Verlag, New York, 1986.

JOSEPH H. SILVERMAN AND JOHN TATE, Rational points on elliptic curves,
Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.

LAWRENCE C. WASHINGTON, Elliptic curves: Number theory and cryptography, 2nd
ED. Discrete Mathematics and Its Applications, Chapman & Hall/CRC, 2008.

HORST G. ZIMMER, Computational aspects of the theory of elliptic curves, Number
theory and applications (Banff, AB, 1988) NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., vol. 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 279-324.

Elliptic curves over Fq

F. Pappalardi

CIMPA

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2
Points of order 3
Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem



	Reminder from Monday
	the j-invariant
	Points of finite order
	Points of order 2
	Points of order 3
	Points of finite order
	The group structure

	sketch of proof
	Important Results
	Hasse's Theorem
	Waterhouse's Theorem
	Rück's Theorem

	Further reading

