
Basic Algorithms in Number Theory Algorithmic Complexity ... 1

Basic Algorithms in Number Theory

Francesco Pappalardi

#2 - Discrete Logs, Modular Square Roots, Polynomials,
Hensel’s Lemma & Chinese Remainder Theorem

September 2nd 2015

SEAMS School 2015

Number Theory and Applications in Cryptography and

Coding Theory

University of Science, Ho Chi Minh, Vietnam

August 31 - September 08, 2015

Basic Algorithms in Number Theory Algorithmic Complexity ... 2

�� ��Monday’s Problems

1. Multiplication: for x, y ∈ Z, find x · y

2. Exponentiation: for x ∈ G (group) and n ∈ N, find xn (Complexity of

operations in Z/mZ)

3. GCD: Given a, b ∈ N find gcd(a, b)

4. Primality: Given n ∈ N odd, determine if it is prime (Legendre/Jacobi

Symbols - Probabilistic Algorithms with probability of error)

5. Quadratic Nonresidues: given an odd prime p, find a quadratic non

residue mod p.

6. Power Test: Given n ∈ N determine if n = bk(∃k > 1)

7. Factoring: Given n ∈ N, find a proper divisor of n

Basic Algorithms in Number Theory Algorithmic Complexity ... 3�� ��PROBLEM 8. Discrete Logarithms:

Given x in a cyclic group G = 〈g〉, find n such that x = gn.

• Need to specify how to make the operations in G

• If G = (Z/nZ,+) then discrete logs are very easy.

• If G = ((Z/nZ)∗,×) then G is cyclic iff n = 2, 4, pα, 2 · pα

where p is an odd prime: famous theorem of Gauß.

• In (Z/pZ)∗ there is no efficient algorithm to compute DL.

• Interesting problem: given p, to compute a primitive root

g modulo p (i.e. to determine g ∈ (Z/pZ)∗ such that 〈g〉 = (Z/pZ)∗)

• Artin Conjecture for primitive roots: any g

(except 0,±1 and perfect squares) is a primitive root for a positive

proportion of primes

• Known to be true assuming the GRH. It is also known that one out of

2, 3 and 5 is a primitive root for infinitely many primes.

Basic Algorithms in Number Theory Algorithmic Complexity ... 4�� ��Discrete Logarithms: continues

• Primordial public key cryptography is based on the difficulty of the

Discrete Log problem

• Several algorithms to compute discrete logarithms are known.

One for all is the Shanks Baby Step Giant Step algorithm.

Input: A group G = 〈g〉 and a ∈ G
Output: k ∈ Z/|G|Z such that a = gk

1. M := d
√
|G|e

2. For j = 0, 1, 2, . . . ,M.

Compute gj and store the pair (j, gj) in a table

3. A := g−M, B := a

5. For i = 0, 1, 2, . . . ,M − 1.

-1- Check if B is the second component (gj) of any

pair in the table

-2- If so, return iM + j and halt.

-3- If not B = B ·A

Basic Algorithms in Number Theory Algorithmic Complexity ... 5

�� ��Discrete Logarithms: continues

• The BSGS algorithm is a generic algorithm.

It works for every finite cyclic group.

• It is based on the fact that any x ∈ Z/nZ can be written as x = j + im

with m = d
√
ne, 0 ≤ j < m and 0 ≤ i < m

• Not necessary to know the order of the group G in advance.

The algorithm still works if an upper bound on the group order is known.

• Usually the BSGS algorithm is used for groups whose order is prime.

• The running time of the algorithm and the space complexity is O(
√
|G|),

much better than the O(|G|) running time of the naive brute force

• The algorithm was originally developed by Daniel Shanks.

Basic Algorithms in Number Theory Algorithmic Complexity ... 6

�� ��Discrete Logarithms: continues

In some groups Discrete logs are easy. For example if G is a cyclic group and

#G = 2m then we know that there are subgroups:

〈1〉 = G0 ⊂ G1 ⊂ · · · ⊂ Gm = G

such that Gi is cyclic and #Gi = 2i. Furthermore

Gi =
{
y ∈ G such that y2

i

= 1
}
.

If G = 〈g〉, for any a ∈ G, either a2
m−1

= 1 or a2
m−1

= g2
m−1

From this property we deduce the algorithm:

Input: A group G = 〈g〉, |G| = 2m and a ∈ G
Output: k ∈ Z/|G|Z such that a = gk

1. A := a, K = 0

2. For j = 1, 2, . . . ,m.

If A2m−j 6= 1, A := g−2
j−1 ·A;K := K + 2j−1

3. Output K

Basic Algorithms in Number Theory Algorithmic Complexity ... 7

�� ��Discrete Logarithms: continues

• The above is a special case of the Pohlig-Hellman Algorithm which works

when |G| has only small prime divisors

• To avoid this situation one crucial requirement for a DL-resistent group

in cryptography is that #G has a large prime divisor.

• If p = 2k + 1 is a Fermat prime, then DL in (Z/pZ)∗ are easy.

• Classical algorithm for factoring have often analogues for computing

discrete logs. A very important one is the Pollard ρ–method.

• One of the strongest algorithms is the index calculus algorithm.

NOT generic. It works only in F∗q .

Basic Algorithms in Number Theory Algorithmic Complexity ... 8

�� ��PROBLEM 9. Square Roots Modulo a prime:

Given an odd prime p and a quadratic residue a, find x s. t. x2 ≡ a mod p

It can be solved efficiently if we are given a quadratic nonresidue g ∈ (Z/pZ)∗

1. We write p− 1 = 2k · q and we know that (Z/pZ)∗ has a (cyclic)

subgroup G with 2k elements.

2. Note that b = gq is a generator of G (in fact if it was b2
j ≡ 1 mod p

for j < k, then g(p−1)/2 ≡ 1 mod p) and that aq ∈ G

3. Use the last algorithm to compute t such that aq = bt. Note that t is

even since a(p−1)/2 ≡ 1 mod p.

4. Finally set x = a(p−q)/2bt/2 and observe that

x2 = a(p−q)bt = ap ≡ a mod p.

The above is not deterministic. However Schoof in 1985 discovered a

polynomial time algorithm which is however not efficient.

Basic Algorithms in Number Theory Algorithmic Complexity ... 9

�� ��PROBLEM 10. Modular Square Roots:

Given n, a ∈ N, find x such that x2 ≡ a mod n

If the factorization of n is known, then this problem (efficiently) can be solved

in 3 steps:

1. For each prime divisor p of n find xp such that x2p ≡ a mod p

2. Use the Hensel’s Lemma to lift xp to yp where y2p ≡ a mod pvp(n)

3. Use the Chinese remainder Theorem to find x ∈ Z/nZ such that

x ≡ yp mod pvp(n) ∀p | n.

4. Finally x2 ≡ a mod n.

The last two tools (Hensel’s Lemma and Chinese Remainder Theorem) will be

covered later

Basic Algorithms in Number Theory Algorithmic Complexity ... 10�� ��Polynomials in (Z/nZ)[X]

A polynomial f ∈ (Z/nZ)[X] is

f(X) = a0 + a1X + · · ·+ akX
k where a0, . . . , ak ∈ Z/nZ

The degree of f is deg f = k when ak 6= 0.

Example: If f(X) = 5 + 10X + 21X3 ∈ Z[x], then we can “reduce” it modulo

n. So

f(X) ≡ X3 mod 5 which is the same as saying:f(X) = X3 ∈ Z/5Z[X].

f(X) ≡ 2 +X mod 3 which is the same as saying:f(X) = 2 +X ∈ Z/3Z[X].

f(X) ≡ 5+3X mod 7 which is the same as saying:f(X) = 5+3X ∈ Z/7Z[X].

For the time being we restrict ourselves to the case of f ∈ Z/pZ[X]. The fact

that Z/pZ is a field is important. (Notation Fp = Z/pZ to remind us this)

We can add, subtract and multiply polynomials in Fp[X].

Basic Algorithms in Number Theory Algorithmic Complexity ... 11

�� ��Polynomials in Fp[X]

We can also divide them!! for f, g ∈ Fp[X] there exists q, r ∈ Fp[X] such that

f = qg + r and deg r < deg g.

Example: Let f = X3 +X + 1, g = X2 + 1 ∈ F3[X]. Then

X3 +X + 1 = (X2 +X + 2)(X + 1) + 2 so that q = X2 +X + 2, r = 2

Basic Algorithms in Number Theory Algorithmic Complexity ... 12

�� ��Polynomials in Fp[X]

The complexity for summing or subtracting f, g ∈ Fp[X] with

max{deg f, deg g} < n, is O(log pn). Why?

The complexity of multiplying or dividing f, g ∈ Fp[X] with

max{deg f, deg g} < n, can be shown to be O(log2(pn)).

Important difference: Polynomials in Fp[X] are not invertible except when

they are constant but not zero. So Fp[X] looks much more like Z than like

Z/mZ.

But if f, g ∈ Fp[X], the gcd(f, g) exists and it is fast to calculate!!!

Basic Algorithms in Number Theory Algorithmic Complexity ... 13

�� ��Polynomials in Fp[X]

As in Z every f ∈ Fp[X] can be written as the product of irreducible

polinomials.

The polynomial Xp −X ∈ Fp[X] is very special. What is its factorization?

Xp −X =
∏
a∈Fp

(X − a) ∈ Fp[X].

Why is it true?

FLT says that ap = a,∀a ∈ Fp. Let’s Look at one example.

Basic Algorithms in Number Theory Algorithmic Complexity ... 14

�� ��PROBLEM 12. Irreducibility Test for Polynomials in Fp:

Given f ∈ Fp[X], determine if f is irreducible:

Theorem. Let Xpn −X ∈ Fp[X]. Then

Xpn −X =
∏

f∈Fp[X]
f irreducible
f monic

deg f divides n

f

We cannot prove it here but we deduce an algorithm:
Input: f ∈ Fp[X] monic

Output: ‘‘Irreducible’’ or ‘‘Composite’’

1. n := deg f

2. For j = 1, . . . , dn/2e
if gcd(Xpj −X, f) 6= 1 then

Output ‘‘Composite’’ and halt.

3. Output ‘‘Irreducible’’.

Basic Algorithms in Number Theory Algorithmic Complexity ... 15

�� ��Polynomial equations modulo prime and prime powers

Often one considers the problem of finding roots of polynomial f ∈ Z/nZ[X].

When n = p is prime then one can exploit the extra properties coming from

the identity

Xp −X =
∏
a∈Fp

(X − a) ∈ Fp[X].

From this identity it follows that gcd(f,Xp −X) is the product of liner factor

(X − a) where a is a root of f .

Similarly we have that

X(p−1)/2 − 1 =
∏
a∈Fp

(a
p)=1

(X − a) ∈ Fp[X].

This identity suggests the Cantor Zassenhaus Algorithm

Basic Algorithms in Number Theory Algorithmic Complexity ... 16

�� ��Cantor–Zassenhaus Algorithm

CZ(p)

Input: a prime p and a polynomial f ∈ Fp[X]

Output: a list of the roots of f

1. f := gcd(f(X), Xp −X) ∈ Fp[X]

2. If deg(f) = 0 Output ‘‘NO ROOTS’’

3. If deg(f) = 1,

Output the root of f and halt

4. Choose b at random in Fp
g := gcd(f(X), (X + b)(p−1)/2)

If 0 < deg(g) < deg(f)

Output CZ(g) ∩ CZ(f/g)

Else goto step 3
The algorithm is correct since f in (Step 4) is the product of (X − a) (a root

of f). So g is the product of X − a with a+ b quadratic residue. CZ(p) has

polynomial (probabilistic) complexity in log pn.

Basic Algorithms in Number Theory Algorithmic Complexity ... 17

�� ��Polynomial equations modulo prime powers

There is an explicit contruction due to Kurt Hensel that allows to “lift” a

solution of f(X) ≡ 0 mod pn to a solution of f(X) ≡ 0 mod p2n.

Example: (Square Roots modulo Odd Prime Powers. Suppose x ∈ Fp is a

square root of a ∈ Fp .

Let y = (x2 + a)/2x mod p2 (y is well defined since gcd(2x, p2) = 1). Then

y2 − a =
(x2 − a)2

4x2
≡ 0 mod p2

since p2 divides (x2 − a)2.

The general story if the famous Hensel’s Lemma.

Basic Algorithms in Number Theory Algorithmic Complexity ... 18

�� ��Polynomial equations modulo prime powers

Theorem (Hensel’s Lemma). Let p be a prime, f(X) ∈ Z[X] and a ∈ Z
such that

f(a) ≡ 0 mod pk, f ′(a) 6≡ 0 mod p.

Then b := a− f(a)/f ′(a) mod p2k is the unique integer modulo p2k that

satisfies

f(b) ≡ 0 mod p2k, b ≡ a mod pk.

Proof. Replacing f(x) by f(x+ a) we can restric to a = 0. Then

f(X) = f(0) + f ′(0)X + h(X)X2 where h(X) ∈ Z[X].

Hence if b ≡ 0 mod pk, then f(b) ≡ f(0) + bf ′(0) mod p2k. Finally

b = −f(0)/f ′(0) is the unique lift of 0 modulo p2k that satisfies

f(b) ≡ 0 mod p2k.�

Basic Algorithms in Number Theory Algorithmic Complexity ... 19

�� ��Chinese Remainder Theorem

Chinese Remainder Theorem. Let m1, . . . ,ms ∈ N pairwise coprime and

let a1, . . . , as ∈ Z. Set M = m1 · · ·ms. There exists a unique x ∈ Z/MZ such

that 

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ as mod ms.

Furthermore if a1, . . . , as ∈ Z/MZ, then x can be computed in time

O(s log2M).

Basic Algorithms in Number Theory Algorithmic Complexity ... 20

�� ��Chinese Remainder Theorem continues

Proof. Let us first assume that s = 2. Then from EEA we can write

1 = m1x+m2y for appropriate x, y ∈ Z. Consider the integer

c = a1m2y + a2m1x.

Then c ≡ a1 mod m1 and a ≡ a2 mod m2. Furthermore if c′ has the same

property, then d = c− c′ is divisible by m1 and m2. Since gcd(m1,m2) = 1 we

have that m1m2 divides d so that c ≡ c′ mod m1m2.

If s > 2 then we can iterate the same process and consider the system:

x ≡ c mod m1m2

x ≡ a3 mod m3

...

x ≡ as mod ms.

. �

Basic Algorithms in Number Theory Algorithmic Complexity ... 21�� ��Chinese Remainder Theorem (applications)

It can be used to prove the multiplicativity of the Euler ϕ function. More

precisely, it implies that, if gcd(m,n) = 1, then the map:

(Z/mnZ)∗ → (Z/mZ)∗ × (Z/nZ)∗, a 7→ (a mod m, a mod n)

is surjective.

It can be used to glue solutions of congruence equations.

Let f ∈ Z[X] and suppose that a, b ∈ Z are such that

f(a) ≡ (modn), f(b) ≡ (modm).

If gcd(m,n) = 1, then a solution c ofx ≡ a mod n

x ≡ b mod m

has the property that f(c) ≡ 0(modnm).

