Basic Algorithms in Number Theory Algorithmic Complexity ...

KHo
o 4
\Q’ '?O

i ()

— ~—— Q

-
— —
— — o =
— — = =
— — [T
— — = e
— — o m
— —
— — ¥ TP.HO CHIMINH ~

BAsic ALGORITHMS IN NUMBER THEORY

FRANCESCO PAPPALARDI

#2 - Discrete Logs, Modular Square Roots, Polynomials,
Hensel’s Lemma & Chinese Remainder Theorem

SEPTEMBER 2™ 2015

SEAMS School 2015

PN SNl eN Number Theory and Applications in Cryptography and
ikl Coding Theory

- University of Science, Ho Chi Minh, Vietnam

CIMPA August 31 - September 08, 2015

Basic Algorithms in Number Theory Algorithmic Complexity ...

MONDAY’S PROBLEMS

1. MULTIPLICATION: for x,y € Z, find = - y

2. EXPONENTIATION: for x € G (group) and n € N, find 2" (Complexity of

operations in Z/mZ)
3. GCD: Given a,b € N find ged(a, b)

4. PRIMALITY: Given n € N odd, determine if it is prime (Legendre/Jacobi
Symbols - Probabilistic Algorithms with probability of error)

5. QUADRATIC NONRESIDUES: given an odd prime p, find a quadratic non

residue mod p.
6. POWER TEST: Given n € N determine if n = b¥(3k > 1)

7. FACTORING: Given n € N, find a proper divisor of n

Basic Algorithms in Number Theory

PROBLEM 8. DISCRETE LOGARITHMS:

Given z in a cyclic group G = (g), find n such that = = ¢".

Need to specify how to make the operations in ¢
If G = (Z/nZ,+) then discrete logs are very easy.
If G = ((Z/nZ)*, x) then G is cyclic iff n = 2,4, p“,2 - p©

where p is an odd prime: famous theorem of Gauf.
In (Z/pZ)* there is no efficient algorithm to compute DL.

Interesting problem: given p, to compute a primitive root
g modulo p (i.e. to determine g € (Z/pZ)* such that (¢g) = (Z/pZ)*)

Artin Conjecture for primitive roots: any g
(except 0, +1 and perfect squares) is a primitive root for a positive

proportion of primes

Known to be true assuming the GRH. It is also known that one out of

2,3 and 5 is a primitive root for infinitely many primes.

Algorithmic Complexity ...

3

Basic Algorithms in Number Theory Algorithmic Complexity ... 4

DISCRETE LOGARITHMS: continues

e Primordial public key cryptography is based on the difficulty of the
Discrete Log problem

e Several algorithms to compute discrete logarithms are known.
One for all is the Shanks Baby Step Giant Step algorithm.
Input: A group G = (g) and a €
Output: k € Z/|G|Z such that a = g~
L= [
2. For 7=0,1,2,..., M.
Compute ¢’ and store the pair (j,¢’) in a table

3. A:=¢g M, B:=qa
5. For +=0,1,2,.... M — 1.

-1- Check if B is the second component (g’) of any

palr in the table
-2- If so, return M + j and halt.
-3- If not B=B-A

Basic Algorithms in Number Theory Algorithmic Complexity ... 5

DISCRETE LOGARITHMS: continues

e The BSGS algorithm is a generic algorithm.

It works for every finite cyclic group.

e [t is based on the fact that any = € Z/n’Z can be written as © = j + im
with m = [{/n],0<j<mand 0 <i<m

e Not necessary to know the order of the group G in advance.

The algorithm still works if an upper bound on the group order is known.
e Usually the BSGS algorithm is used for groups whose order is prime.

e The running time of the algorithm and the space complexity is O(+/|G]),
much better than the O(|G|) running time of the naive brute force

e The algorithm was originally developed by Daniel Shanks.

Basic Algorithms in Number Theory Algorithmic Complexity ...

DISCRETE LOGARITHMS: continues

In some groups Discrete logs are easy. For example if & is a cyclic group and

#(G = 2™ then we know that there are subgroups:
(1)=GpcGyC---CGp=G

such that G; is cyclic and #G; = 2°. Furthermore

G, = {y € (G such that y2i = 1} :

If G = (g), for any a € G, either a>° =1 ora =g

From this property we deduce the algorithm:
Input: A group G = (g), |G|=2" and ac G
Output: k € Z/|G|Z such that a = gF
1. A:=a, K=0
2. For 7=1,2,...,m.

1f A2" 7 41, Ai=¢g Y A K:=K+2/1
3. QOutput K

6

Basic Algorithms in Number Theory Algorithmic Complexity ... 7

DISCRETE LOGARITHMS: continues

e The above is a special case of the Pohlig-Hellman Algorithm which works

when |G| has only small prime divisors

e To avoid this situation one crucial requirement for a DL-resistent group
in cryptography is that #G has a large prime divisor.

o If p = 2% + 1 is a Fermat prime, then DL in (Z/pZ)* are easy.

e (lassical algorithm for factoring have often analogues for computing

discrete logs. A very important one is the Pollard p—method.

e One of the strongest algorithms is the index calculus algorithm.

NOT generic. It works only in .

Basic Algorithms in Number Theory Algorithmic Complexity ...

(PROBLEM 9. SQUARE RooTs MODULO A PRIME:)

Given an odd prime p and a quadratic residue a, find = s. t. 22 = @ mod p

It can be solved efficiently if we are given a quadratic nonresidue g € (Z/pZ)*

1. We write p — 1 = 2* - ¢ and we know that (Z/pZ)* has a (cyclic)
subgroup (G with 2" elements.

2. Note that b = ¢? is a generator of GG (in fact if it was b2’ = 1 mod P
for j < k, then ¢»~1)/2 = 1 mod p) and that a? € GG

3. Use the last algorithm to compute ¢ such that a? = b*. Note that ¢ is

even since a?~1/2 = 1 mod p.
4. Finally set x = aP~9/2p/2 and observe that
22 = aP~Dpt = ¢ = ¢ mod p.

The above is not deterministic. However Schoof in 1985 discovered a

polynomial time algorithm which is however not efficient.

Basic Algorithms in Number Theory Algorithmic Complexity ... 9

[PROBLEM 10. MODULAR SQUARE ROOTS:J

Given n,a € N, find = such that 22 = a mod n

If the factorization of n is known, then this problem (efficiently) can be solved

in 3 steps:

1. For each prime divisor p of n find z, such that 27 = a mod p

2
p
2. Use the Hensel’s Lemma to lift =, to y, where Y, = a mod p“p(”)

3. Use the Chinese remainder Theorem to find = € Z/nZ such that
z = 7y, mod p*»(") Vp | n.

4. Finally 2? = a mod n.

The last two tools (Hensel’s Lemma and Chinese Remainder Theorem) will be
covered later

Basic Algorithms in Number Theory Algorithmic Complexity ... 10

(Polynomials in (Z/nZ)| X])

A polynomial f € (Z/nZ)|X] is

f(X)=ao+ a1 X+ - +a,X" where ay,...,a; € Z/nZ

The degree of f is deg f = k when a; # 0.
Example: If f(X) =5+ 10X + 21X*° € Z|[z|, then we can “reduce” it modulo

n. S0
f(X)=X?mod5 which is the same as saying: f(X) = X° € Z/5Z[X].

f(X)=2+ X mod3 which is the same as saying: f(X) =2+ X € Z/3Z[X].
f(X)=5+3X mod 7 which is the same as saying: f(X) = 5+3X € Z/7Z[X].

For the time being we restrict ourselves to the case of f € Z/pZ|X]. The fact
that Z/pZ is a field is important. (Notation [F, = Z/pZ to remind us this)

We can add, subtract and multiply polynomials in F,[X].

Basic Algorithms in Number Theory Algorithmic Complexity ... 11

[Polynomials in [F, X]J

We can also divide them!! for f, g € F,[X]| there exists ¢, » € F,[X| such that
f=qg+1r and degr <deggy.
Example: Let f = X° + X + 1,9 = X? +1 € F3[X]. Then

X34+ X+1=(X>+X+2D(X+1)+2 sothat q=X?>+X+2,7r =2

Basic Algorithms in Number Theory Algorithmic Complexity ... 12

[Polynomials in [F,| X]]

The complexity for summing or subtracting f,g € [F,| X] with
max{deg f,deg g} < n, is O(logp™). Why?

The complexity of multiplying or dividing f, ¢ € F,|X| with
max{deg f,deg g} < n, can be shown to be O(log®(p™)).

Important difference: Polynomials in [F,[X| are not invertible except when

they are constant but not zero. So F,[X| looks much more like Z than like
Z./mZ.

But if f, g € F,|X], the gcd(f, g) exists and it is fast to calculate!!!

Basic Algorithms in Number Theory Algorithmic Complexity ... 13

[Polynomials in [F,| X]J

As in Z every f € [F,| X| can be written as the product of irreducible

polinomials.

The polynomial X?” — X € IF,,| X]| is very special. What is its factorization?

X?—X =][] (X —a) eF,[X].

ack,
Why is it true?

FLT says that a¥ = a,Va € IF,. Let’s Look at one example.

Basic Algorithms in Number Theory Algorithmic Complexity ... 14

[PROBLEM 12. IRREDUCIBILITY TEST FOR POLYNOMIALS IN Fp:]

Given [€ F,|X], determine if f is irreducible:

Theorem. Let XP — X € F,[X]. Then

x"-x= 1] f

fEF,[X]
farreducible
f monic
deg f divides n

We_cannot prove it here but we deduce an algorithm:
Input: f & F,[X]| monic
Output: ¢‘Irreducible’’ or ‘‘Composite’’
1. n:=degf
2. For j=1,...,|n/2]
if ged(XP — X, f) # 1 then
Output ‘ ‘Composite’’ and halt.

3. QOutput ¢ ‘Irreducible’’.

Basic Algorithms in Number Theory Algorithmic Complexity ... 15

[Polynomial equations modulo prime and prime powers]

Often one considers the problem of finding roots of polynomial f € Z/nZ[X].

When n = p is prime then one can exploit the extra properties coming from
the identity
X?— X =]] (X —a) eF,[X].
aclk,

From this identity it follows that ged(f, X? — X) is the product of liner factor

(X — a) where a is a root of f.

Similarly we have that

X021 =] (X —a) €FplX].
aclk,

()1

This identity suggests the Cantor Zassenhaus Algorithm

Basic Algorithms in Number Theory Algorithmic Complexity ... 16

[Cantor—Zassenhaus Algorithm)

CZ(p)
Input: a prime p and a polynomial f € [F,[X]
Output: a list of the roots of f
1. fi=ged(f(X),XP-X)eF,[X]
2. If deg(f) =0 Output ‘NO ROOTS’’
3. If deg(f)=1,

Output the root of f and halt
4. Choose b at random in [,

g = ged (£(X), (X + b)P=D/2)

If 0 < deg(g) < deg(f)

Output C'Z(g) N CZ(f/qg)

Else goto step 3
The algorithm is correct since f in (Step 4) is the product of (X — a) (a oot

of). So g is the product of X — a with a + b quadratic residue. CZ(p) has
polynomial (probabilistic) complexity in log p™.

Basic Algorithms in Number Theory Algorithmic Complexity ... 17

(Polynomial equations modulo prime powers)

There is an explicit contruction due to Kurt Hensel that allows to “lift” a
solution of f(X) = 0 mod p” to a solution of f(X) = 0 mod p?".

Example: (Square Roots modulo Odd Prime Powers. Suppose = €), is a

square root of a € I, .

Let y = (2% + a) /22 mod p* (y is well defined since ged(2z,p?) = 1). Then

2 2
2 _(@*—a)” _ 2
Yy —a = 2 = 0 mod p

since p* divides (z° — a)?.

The general story if the famous Hensel’s Lemma.

Basic Algorithms in Number Theory Algorithmic Complexity ... 18

(Polynomial equations modulo prime powers)

Theorem (HENSEL’S LEMMA). Let p be a prime, f(X) € Z[X]| and a € Z
such that

f(a) = 0mod p”, f'(a) #Z 0 mod p.
Then b :=a — f(a)/f'(a) mod p?* is the unique integer modulo p?* that

satisfies
£(b) = 0 mod p**, b = a mod p~.

PROOF. Replacing f(x) by f(x + a) we can restric to a = 0. Then
f(X) = f(0)+ f(0)X + h(X)X? where h(X) € Z[X].

Hence if b = 0 mod p¥, then f(b) = £(0) + bf'(0) mod p**. Finally
b= —£(0)/f(0) is the unique lift of 0 modulo p?* that satisfies
f(b) = 0 mod p?*.0J

Basic Algorithms in Number Theory Algorithmic Complexity ... 19

Chinese Remainder Theorem

CHINESE REMAINDER THEOREM. Let mq,...,ms € N patrwise coprime and
let ay,...,as € Z. Set M = mq ---ms. There exists a unique x € Z/MZ such
that

(
T = a1 mod my

T = ao mod mo

r = as mod myg.

\

Furthermore if a1, ...,as € Z/MZ, then x can be computed in time
O(slog® M).

Basic Algorithms in Number Theory Algorithmic Complexity ... 20

Chinese Remainder Theorem continues

PROOF. Let us first assume that s = 2. Then from EEA we can write
1 = mqix + moy for appropriate =,y € Z. Consider the integer

C = a1msy + aomix.

Then ¢ = a; mod m; and a = as mod ms. Furthermore if ¢ has the same
property, then d = ¢ — ¢’ is divisible by m; and ms. Since ged(mq,mo) = 1 we
have that mms divides d so that ¢ = ¢/ mod m{ms.

If s > 2 then we can iterate the same process and consider the system:

)
c mod mims

X

r = a3 mod ms

r = as mod my.

Basic Algorithms in Number Theory Algorithmic Complexity ...

[Chinese Remainder Theorem (applications)]

It can be used to prove the multiplicativity of the Euler ¢ function. More
precisely, it implies that, if gcd(m,n) = 1, then the map:

(Z/mnZ)* — (Z/mZ)* x (Z/nZ)*,a — (a mod m,a mod n)
is surjective.

It can be used to glue solutions of congruence equations.

Let f € Z[X] and suppose that a,b € Z are such that
f(a) = (modn), f(b) = (modm).

If gcd(m,n) = 1, then a solution ¢ of

r=amodn

r = bmodm

has the property that f(c) = 0(modnm).

21

