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Elliptic curves over I

Definition (Elliptic curve)

An elliptic curve over a field K is the data of a non singular
Weierstraf3 equation
E:y?+aixy+asy =x3+ ax?+ asx + as,a € K

If p=charK > 3,

1
2
— ajai — 8afapa — 164545 + 96a;a3a; + 6485+

aas + 12atayas + 48a5a5a, + 64a3a; — 36a5azas
—144a,apa385 — 728 asas — 288arasas + 432a3) # 0

Ap = o; (& asas — 8@ arazas — 16a188asas + 365854

B
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Elliptic curves over K

After applying a suitable affine transformation we can always
assume that E/K has a Weierstra3 equation of the following

form

Example (Classification (p = char K))

E P Ag
Y =x*+Ax+B >5 | 4A° 4+ 27B°
V4xy=xP+axP+a | 2 | &
Vday=xtaxta | 2 | a

3~ p2p2
y2=x®+Ax>+Bx+C 3 G =58 =TEAEE

+4B3 + 27C?

Let E/F elliptic curve, set co := [0, 1,0]. Set
E(Fq) ={(x,y) €F2: y? = x3 + Ax + B} U {oc}
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Formulas for Addition on E (Summary)

E:y?+aixy + asy = x° + apx? + asx + a

P = (x1,51), P2 = (X, y2) € E(Fq) \ {00},
Addition Laws for the sum of affine points

o |f P1 75 P2
P. P, = 0
.« X =% - AtEe =)
® X Xo
# —_ Yo—n — NiXe—YoXq
T o X—Xq Y= Xo—Xq
° |f P1 = P2

Pi+ePo =2P) = o0 |

e 2y +aix+az=0
. 2y1+a1x+a37é0

\— 3x2+2apxi+ay—ay
- 2y1+aix+ag ’

__ an +x13 —ayXxy —2ag
- 2y1+ajx1+a3

Then
Py +EP2=()\2—a1)\—32—X1 —Xg,—)\s—af)\+()\+a1)(az+X1+X2)—ag—1/)J
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Formulas for Addition on £ (Summary for special equation)

E:y?=x3+Ax+B

P1 = (X17y1)7P2 = (X23y2) € E(Fq)\{oo}!
Addition Laws for the sum of affine points

° |fP17éP2
® X1 = Xo
X1 #£ X
)\:—2:2 v
o If P =P,
[ y1:0
* 1 #0 ,
3x{+A
A== v =
Then

Pi+e P2 = (X — X1 — Xo, =A% + A(x1 + X2) — v/) J

— NXe—)eXq
X2 =X

3_ Ax;—2B

XA el

2y,

o PriteP=0c0]

Pi+e Po = 2P = o0 |
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Theorem
The addition law on E /K (K field) has the following properties:

(@) P+e Qe E VP,Qe E
(b) P+teoco=c0o+gP=P VP e E
() P+e(—P) =0 VP e E
(d P+e(Q+eR) =(P+cQ)+£eR VP,Q,Rc E
() P+eQ=Q+cP VP,Qc E

So (E(K), +E) is an abelian group.

Remark:
If E/K = VL,K C LC K, E(L)is an abelian group.

—P=—(x1,y1) = (X1, —a@1xy —a — y1)
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Group Structure

Theorem (Structure of the group of rational pointd of E)

(i.e. E(Fy) is either cyclic (n = 1) or the product of 2 cyclic

groups)

E(]Fq) = Cn @ an

3n, k € N0
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EXAMPLE: Elliptic curves over [

From our previous list:

Groups of points

E E(F2) |E(F2)|
Y24+ xy = x3 +x% +1 {00, (0,1)} Co
Y2+ xy =x3+1 {00,(0,1),(1,0),(1,1)} | C4
Y2ty =x"+x {0,(0,0),(0,1),
(1,0).(1,1)} Cs
Y+y=x3+x+1 {oo} C;
yity=x° {0,(0,0),(0,1)} | Ca
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EXAMPLE: Elliptic curves over I3

Groups of points

i E; Ei(FF3) | Ei(F3)|
1 y2=x3+x {0, (0,0), (2, 1), (2,2)} Cs
2 y2=x3—x {00, (1,0), (2,0), (0,0)} C Gy
3 y2 = X3 —Xx+1 {0, (0, 1), (0,2), (1,1), (1, 2), (2, 1), (2,2)} C7
41 y>=x3—x—1 {0} Cq
5 y>?=x3+x%-1 {c0, (1,1), (1,2)} Cs
6 y2 = X3 =+ X2 +1 {00, (0,1),(0,2), (1,0), (2, 1), (2,2)} CG
71 yP=x3—xX24+1] {00,(0,1),0,2),(1,1),(1,2),} Cs
8 yZP=x3—xT-1 {0, (2,0))} Ca
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EXAMPLE: Elliptic curves over [5

Example (Elliptic curves over Fs)

e VE/F5 (12 inequivalent elliptic curves)

vn, € {2,8,5,7,10}, 3!

E;
Es

Es

E7

E/Fs : #E(Fs) = C,
Y2 =x3 41, B y? = X3 + 2= Ey(Fs) = Ex(Fs) = Ge
yl=x34+xand E;: y? =x3+x+2

E3(Fs) = Co® Co

cy?=x3+4xand Eg : y? = x® 4+ 4x + 1

Y2 =x3+ x4+ 1

Es(Fs) = Co @ Ca

Ey(Fs5) = Cs

12

Es(Fs) = Cs

= E(IF5) = Cg
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Points of order 2

Let
E:y?=x3+Ax*+Bx +C.

(X0, Yo0) € E(IFq) has order 2 if and only if

X3+ Ax¢ 4+ Bxyp+ C=0.

Definition
2—torsion points

E[2] = {P € E(Fy) : 2P = }.

In conclusion
CapC if p > 2
E[2] =< G, fp=2E:y2+xy=x3+asx+as

{00} ifp=2E:y?+agy =x3+ax®+ a
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Determining points of order 3
Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P |

So,ifp>3and E:y>=x*>+ Ax+ B
2P = (Xgp,ygp) = 2(X1,y1) = (/\2 72X1,*/\3 + 2AXx1 — V) J

3x24+A X} —Ax—2B

where \ = V= 2,

P has order 3 < Xxop = Xy )

Substituting \, Xop — X4 = —3x —6AG —12Bu+A° _ l

4(x34Ax;+4B)

Note
o 13(x) := 3x* + 6AX? + 12Bx — A? the 3" division
polynomial
e (x1,y1) € E(Fg) hasorder3 = 43(x1) =0
e E(F,) has at most 8 points of order 3
o lfp#£3,E[38]:={P€E:3P=c0}=2C;& Cs3
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Determining points of order 3 (continues)

Fact:

Let E: y? = x3 + Ax?2 + Bx + C, A, B, C € F3n. Prove that if
P = (x1,y1) € E(F3n) has order 3, then

O A +AC-B2=0
® E[3] = G3if A# 0 and E[3] = {oo} otherwise

Example
If E:y?=x3+x+1,then #E(Fs) = 9.
Y3(x) = (x + 3)(x + 4)(x% + 3x + 4)
Hence
E[3] = {oo,(z,i1),(1,if3),(1 N SEE s ﬁ))}
0 E(]F5) = {OO’ (2, i1)v (07i1)7 (3711), (43 :t2)} = C9
® Since Fo5 = F5[\/§] = E[3] C E(F25)
® #E(Fs)=27 = E(Fxs)=C3o Gy
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Determining points of order 3 (continues)

Inequivalent curves /F; with #E(F7) = 9.

E P3(x) E[3] N E(F7) E(F7) =
Pxi2 X(X + 1)(X +2)(x + 4) {(5 Oﬂs)id ¢1)} C oG
¥ =x>+3x+2 | (x+ 2)(x° 4+ 5x° + 3x + 2) {0, (5, £3)} Cy
Y2 =x>+5x+2 | (x+4)(x® +3x% + 5x + 2) {0, (3, £3)} Cy
y2=x"4+6x+2]| (x+1)(x° +6x% +6x +2) {0, (6, £3)} Co

Can one count the number of inequivalent E/IF, with #E(Fq) = r?

Example (A curve over F, = Fy(¢), &% = € + 1;

We know E(F2) = {o0, (0,0), (0,1)} C E(F4).

E:y?+y=x°)

E(F4) = {o0,(0,0),(0,1),(1,8), (1,6 +1),(£,8), (&, €+ 1), (€ + 1,8, (+ 1, £+ 1)}

Pa(X) = x* +x = x(x + ) (X + ) (x + £+ 1) = E(F,) =

Cs @ Cs J

Fact: (Suppose (xo, o) € E/F2n has order 3. Then)

” E:y2+asy:x3+a4x+a6 = Xg+a§XO+(a4a3)2:O
9E3y2+Xy=X3+32X2+a6 = Xg+xg+a620
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Elliptic curves over Fq

Determining points of order (dividing) m
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Let E/K and let K an algebraic closure of K.

- Reminder from
Elm ={Pe€ E(K): mP= oo}J Thursday
Examples
Structure of E(Fy)
Structure of E(F3)

Theorem (Structure of Torsion Points) Furtier BempEs
Let E/K and m € N. If p = char(K) t m, o ol i ordet
~ [ Points of finite order
E[m] = Cm @ Cm J The group structure

— n'm’/ / sketch of proof
If m= p m ’pJ( m ’ Important Results
E[m] = Cm D Cm/ or E[m] = Cm/ P Cm/ J :‘\::fhzz:::rem
Theorem

Riick's Theorem

Subfield curves

g - ~ Legendre Symbols
E/Fp iS Ca”ed Ord,nar:y If E[p] o Cp Further reading
supersingular  if E[p] = {cc}
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Group Structure Of E(]Fq) Elliptic curves over Fq

F. Pappalardi
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E(Fq) = Cn @ an Examples

Structure of E(Fy)
Structure of E(F3)
Further Examples

Points of finite order

Proof. Points of order 3
From classification Theorem of finite abelian group Fonis otiinie order
E(FQ) = Cn1 S an DD Cnr sketch of proof
with n,‘|n,'+1 for i > 1. Important Results
Hence E(IF4) contains nj points of order dividing ny. From asses Theorem
Structure of Torsion Theorem, #E[n] < n3. Sor < 2 O Theoem
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Subfield curves
Theorem (Corollary of Weil Pairing) Legendre Symbols
Let E/Fq and n,k € N s.t. E(Fq) = Ch® Cok. Thenn| g —1. Further reading
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Sketch of the proof of Structure Theorem of Torsion Points
The division polynomials
The proof generalizes previous ideas and determine the points
P € E(FFq) such that mP = oo or equivalently (m—1)P = —P.

Definition (Division Polynomials of E : y? = x* + Ax + B (p > 3))

1o =0
Py =1
o =2y

s =3x* + 6Ax® + 12Bx — A
4 =4y(x® + 5Ax* +20Bx3 — 5A2x® — 4ABx — 8B% — A%)

Yomet =Vme2¥l — Ym_1¥ly  form>2

Vom = (g;) - (miaPmg — Ym-a¥y) form>3

The polynomial v, € Z[x, y] is called the m" division
polynomial
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Elliptic curves over Fq

F. Pappalardi

Theorem (£ : Y? = X® + AX + Belliptic curve, P = (x,y) € E)
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Ym—1¥me1 Yam(X, y)) _ ( Pm(X) wm(X, y)) Ty
Va(x) T 205(x) m(X)" n(x,y) e )
Structure of E(F3)

m(x,y) = (x -

Further Examples

Where Points of finite order

’LZJ w w 1/)2 Points of order 3
Pm = X2 — Y1 Vm—1, Wm = —r= 14y =k J Points of finite order

The group structure

Important Results

Remark. Hasse’s Theorem
Waterhouse'’s

o E[2m + 1]\ {00} = {(x,) € E(K) : Yam1(x) = 0}

Riick’'s Theorem

° E[2m] \ E[2] = {(X y) € E( ) 1¢2m( ) = } Subfield curves

Legendre Symbols

Further reading
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Example

a(x) =2y(x® + 5Ax* + 20Bx® — 5A%x> — 4BAx + (—A3 = 332))
Ps(x) =5x"2 + 62Ax"° + 380Bx° — 105A%x® + 240BAx’
(—300,43 - 24032) x® — 696BA%x®
(7125A4 = 192052A) x* + (7803A3 = 160033) X3
+ (—504° — 2408°A°) X + (—100BA" — 6405°A) x

(A6 — 32B°A° — 2565“)
o(x) =2y(6x"® + 144Ax"* 4 1344Bx"® — 728A%x™ + (—2576A3 = 537682) x'"°
— 9152BA4%x° + (—1884A4 = 3974452A) X8+ (15368A3 = 4454453) X

+ (72576A5 — 53768°A°) x° + (—6720BA" — 322568°A) x°
728A° — 8064B2A° — 1075234) x*+ (—3584BA5 - 2508853A2) X3
= 2764SB4A) x?

+(-
+ (14447 — 30728°A°
+ (192BA° — 5128°A° — 122888°) x + (64° + 1928°A° + 1024B* A%))
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Elliptic curves over Fq

F. P lardi
Theorem (Hasse) appalardi
Let E be an elliptic curve over the finite field F 4. Then the order s =
of E(Fy) satisfies = A E
Reminder from
|q + 1— #E(]Fq)| S 2\/6 Thursday
Examples
Structure of E(Fy)
2 2 H Structure of E(Fg)
So #E(Fq) € —1)s, 1)¢] the Hasse interval T, 3
# ( q) [(\/a ) ) (\/a + ) ] q Further Examples
Example (Hasse Intervals) RS AT QL
Points of order 3
Z f? 53 a5 Points of finite order
3 {1 23,456, 7} The group structure
4 {1v213141516=7;8,9}
5 {2.3.4,5.6.7,8.9, 10} sketch of proof
7 {3,4,5,6,7,8,9,10, 11, 12, 13} Important Results
8 {4.5,6.7,8,9,10, 11, 12, 13, 14}
9 {4,5,6,7,8,9,10, 11,12, 13, 14, 15, 16}
11 {6,7,8,9,10, 11, 12, 13 14,15, 16, 17, 18} Waterhouse’s
13 {7,8,9, 10,11,12 13, 14, 15, 16, 17, 18 19, 20,21} Theorem
16 | {9.10,11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25} Riick's Theorem
17 {10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28} Subfield curves
23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36} Legendre Symbols
27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38} i di
29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40} urther reading
31 {21, 22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24,25, 26,27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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Elliptic curves over Fq

Theorem (Waterhouse)
F. Pappalardi

Letg=p"andletN =q+1— a.
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JE/Fy s.t#E(Fg) = N < |a| < 2,/g and

one of the following is satisfied: Reminder rom
(I) ng(a7 p) = 1; Examples

AR . . T Structure of E(Fyp)
(ii) n even and one of the following is satisfied: Structure of E(J}‘z)

a—= :|:2 i Further Examples
0 f 5 Points of finite order

9 1% 7_é 1 (mOd 3), and a= if; Points of order 3
e P $_£ 1 (mod 4), and a= 0; Points of finite order

The group structure

(iii) nis odd, and one of the following is satisfied:
© p=2o0r3,anda= +p""/2;

sketch of proof

Important Results

9 a=0. Hasse’s Theorem
Example (g prime VN € Iy, 3E /Fq, #E(Fq) = N. q not prime:) Riick's Theorem
q ac Subfield curves
84::2232 f 10 0. 1.2, 3 3 } ) Legendre Symbols
9=32 { ’ s 1' ,2,8,4,5,6} Further reading

16=2% | { -6 =R ,0,1,2,3,4,5,6,7,8}

25 =52 | { ,0,1,2,8,4,5,6,7,8,9, }
27=3% | { —6 -3 ,0,1,2,3,4,5,6,7,8,9, 10}
32=25 | { —10 —6 —4 —2 ,0,1,2,3,4,5,6,7,8,9,10, 11}
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Elliptic curves over Fq

Theorem (Riick)
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Suppose N is a possible order of an elliptic curve /Fq, g = p".
Write

N=p°mn,, ptnny and n | np (possibly ny =1).
There exists E /Fq s.t. Reminder from

Thursday

E(FQ) = Cn1 ©® Cn2pe Examples

Structure of E(Fy)
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Structure of E(F3)
If and Only If Further Examples

Points of finite order

© ni = no in the case (ii).1 of Waterhouse’s Theorem; Points of order 3
5 5 Poi f finif d
® ni|q — 1 in all other cases of Waterhouse’s Theorem. e

The group structure
sketch of proof

Important Results

Exam ple Hasse’s Theorem
Waterhouse's
o If g=p?" and #E(Fy) = g+ 1+2,/G = (p" + 1), then
E(Fq) = Cp”:i:1 2] cp”:H- Subfield curves
o Let N=100and g =101 = 3£, 5, Es, Ey/Fior St Logereesyneis
E1(F101) = C10 ® Cyo Ex(F101) = Co @ Csp Further reading

E3(F101) = Cs ® Cxo E4(F101) = Cioo

5.22



Subfield curves

Definition

Let E/Fq and write E(Fy) =q+1—a, (|al < 2,/q). The
characteristic polynomial of E is

Pe(T)=T?—aT + q € Z[T].

and its roots:

a:l(a+ a2—4q)

: S

are called characteristic roots of Frobenius (Pg(®4) = 0).

Theorem
VneN
#E([Fg)=q"+1—(a"+5").
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Subfield curves (continues)

where Pe(T) = T2 —aT +q= (T — a)(T — B) € Z[T]

Curves /F»

E a | Peg(T) (v, B)
V2Axy=x3+x2+1 | 1 | T2=-T+2 | J(1£V-7)
y2+xy=x3+1 1| T2+ T+2 | }(-1£V=7)
YP+y=x34+x —2 | T242T+2 | —1£i
V2+y=x3+x+1 2 | T2P-2T+2 | 1+i
yYo+y=x° 0 | T2+2 +v/-2

3 2

E:y2+xy:x + x5 +1 =

/5

100
100
E(Fp100) = 2 +1< Y ) (

2

100
> = 1267650600228229382588845215376
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Subfield curves

E(FQ) = Q+ 1-a= E(Fqn) = qn + 1 — ((]{ﬂ + ‘Bn)

where Pe(T) = T2 —aT +q= (T —a)(T — B) € Z[T]

Curves /Fs;

i a PEI(T) (avﬁ)

1 yv’=x34+x] 0 T°+3 +/-3

2 y? =x 0 T°+3 +/-3

3| y?=x3—x+1| -83[T?2+3T+3 | 3(-3+vV-3)
4] y?’=x®-x-1] 8 [ T2-3T+3| 1(8x£V-3)
5[y2=x3+x2-1] 1 | T°-T+3 | 1(1+£V/-1)
6| y2=x3—x2+1| 1] T°+T+8 | J(-1x£V/-1)
7 yP=x3+x2+1| -2 | T°+2T+3 —1+v/-2

8|y’ =x3—x-1| 2 | T°-2T +3 1+/-2

Lemma

Lets, =a" + B" where a3 = g and a + 8 = a. Then

Sp = 2,

,S1=a and Sp.1 = asp— QSn_1
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Legendre Symbols
Recall the Finite field Legendre symbols: let x € Fy,

+1 if £ = x has a solution t € F,
X _ o2 A
(Fq) =< —1 if t* = x has no solution t € [,
0 ifx=20

Theorem
LetE : y? = x® + Ax + B overF,. Then

#E(Fq) = g+ 1+ X, (Xsﬁ?—qm;) J

Proof.

Note that
. 2 if 3y € Fy s.t. (X0, £40) € E(Fy)
14+ (B8) = 01 if (x0,0) € E(Fy)
otherwise

#E(Fq) =1+ X er, (1 + (#))

Hence
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)
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