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5.2

Elliptic curves over Fq

Definition (Elliptic curve)

An elliptic curve over a field K is the data of a non singular
Weierstraß equation
E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,ai ∈ K

If p = char K > 3,

∆E :=
1
24

(
−a5

1a3a4 − 8a3
1a2a3a4 − 16a1a2

2a3a4 + 36a2
1a2

3a4

− a4
1a2

4 − 8a2
1a2a2

4 − 16a2
2a2

4 + 96a1a3a2
4 + 64a3

4+

a6
1a6 + 12a4

1a2a6 + 48a2
1a2

2a6 + 64a3
2a6 − 36a3

1a3a6

−144a1a2a3a6 − 72a2
1a4a6 − 288a2a4a6 + 432a2

6
)
6= 0
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5.3

Elliptic curves over K

After applying a suitable affine transformation we can always
assume that E/K has a Weierstraß equation of the following
form

Example (Classification (p = char K ))
E p ∆E

y2 = x3 + Ax + B ≥ 5 4A3 + 27B2

y2 + xy = x3 + a2x2 + a6 2 a2
6

y2 + a3y = x3 + a4x + a6 2 a4
3

y2 = x3 + Ax2 + Bx + C 3 4A3C − A2B2 − 18ABC
+4B3 + 27C2

Let E/Fq elliptic curve, set∞ := [0,1,0]. Set
E(Fq) = {(x , y) ∈ F2

q : y2 = x3 + Ax + B} ∪ {∞}
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5.4

Formulas for Addition on E (Summary)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

P1 = (x1, y1),P2 = (x2, y2) ∈ E(Fq) \ {∞},
Addition Laws for the sum of affine points

• If P1 6= P2

• x1 = x2 ⇒ P1 +E P2 =∞

• x1 6= x2

λ = y2−y1
x2−x1

ν = y1x2−y2x1
x2−x1

• If P1 = P2

• 2y1 + a1x + a3 = 0 ⇒ P1 +E P2 = 2P1 =∞

• 2y1 + a1x + a3 6= 0

λ =
3x2

1+2a2x1+a4−a1y1
2y1+a1x+a3

, ν = − a3y1+x3
1 −a4x1−2a6

2y1+a1x1+a3

Then
P1 +E P2 = (λ2 − a1λ− a2 − x1 − x2,−λ3 − a2

1λ + (λ + a1)(a2 + x1 + x2)− a3 − ν)
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5.5

Formulas for Addition on E (Summary for special equation)

E : y2 = x3 + Ax + B

P1 = (x1, y1),P2 = (x2, y2) ∈ E(Fq) \ {∞},
Addition Laws for the sum of affine points

• If P1 6= P2

• x1 = x2 ⇒ P1 +E P2 =∞

• x1 6= x2

λ = y2−y1
x2−x1

ν = y1x2−y2x1
x2−x1

• If P1 = P2

• y1 = 0 ⇒ P1 +E P2 = 2P1 =∞

• y1 6= 0

λ =
3x2

1+A
2y1

, ν = − x3
1 −Ax1−2B

2y1

Then

P1 +E P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν)
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5.6

Theorem

The addition law on E/K (K field) has the following properties:

(a) P +E Q ∈ E ∀P,Q ∈ E
(b) P +E ∞ =∞+E P = P ∀P ∈ E
(c) P +E (−P) =∞ ∀P ∈ E
(d) P +E (Q +E R) = (P +E Q) +E R ∀P,Q,R ∈ E
(e) P +E Q = Q +E P ∀P,Q ∈ E
So (E(K̄ ),+E ) is an abelian group.

Remark:

If E/K ⇒ ∀L,K ⊆ L ⊆ K̄ ,E(L) is an abelian group.

−P = −(x1, y1) = (x1,−a1x1−a3− y1)
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5.7

Group Structure

Theorem (Structure of the group of rational pointd of E)

E(Fq) ∼= Cn ⊕ Cnk ∃n, k ∈ N>0

(i.e. E(Fq) is either cyclic (n = 1) or the product of 2 cyclic
groups)
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5.8

EXAMPLE: Elliptic curves over F2

From our previous list:

Groups of points

E E(F2) |E(F2)|

y2 + xy = x3 + x2 + 1 {∞, (0,1)} C2

y2 + xy = x3 + 1 {∞, (0,1), (1,0), (1,1)} C4

y2 + y = x3 + x {∞, (0,0), (0,1),
(1,0), (1,1)} C5

y2 + y = x3 + x + 1 {∞} C1

y2 + y = x3 {∞, (0,0), (0,1)} C3
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5.9

EXAMPLE: Elliptic curves over F3

Groups of points

i Ei Ei (F3) |Ei (F3)|
1 y2 = x3 + x {∞, (0, 0), (2, 1), (2, 2)} C4

2 y2 = x3 − x {∞, (1, 0), (2, 0), (0, 0)} C2 ⊕ C2

3 y2 = x3 − x + 1 {∞, (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)} C7

4 y2 = x3 − x − 1 {∞} C1

5 y2 = x3 + x2 − 1 {∞, (1, 1), (1, 2)} C3

6 y2 = x3 + x2 + 1 {∞, (0, 1), (0, 2), (1, 0), (2, 1), (2, 2)} C6

7 y2 = x3 − x2 + 1 {∞, (0, 1), (0, 2), (1, 1), (1, 2), } C5

8 y2 = x3 − x2 − 1 {∞, (2, 0))} C2



Elliptic curves over Fq

F. Pappalardi

Reminder from
Thursday

Examples

Structure of E(F2)

Structure of E(F3)

Further Examples

Points of finite order

Points of order 3

Points of finite order

The group structure

sketch of proof

Important Results

Hasse’s Theorem

Waterhouse’s
Theorem

Rück’s Theorem

Subfield curves

Legendre Symbols

Further reading

5.10

EXAMPLE: Elliptic curves over F5

Example (Elliptic curves over F5)

• ∀E/F5 (12 inequivalent elliptic curves)
• ∀n,∈ {2,3,5,7,10},∃! E/F5 : #E(F5) ∼= Cn

• E1 : y2 = x3 + 1, E2 : y2 = x3 + 2⇒ E1(F5) ∼= E2(F5) ∼= C6

• E3 : y2 = x3 + x and E4 : y2 = x3 + x + 2
E3(F5) ∼= C2 ⊕ C2 E4(F5) ∼= C4

• E5 : y2 = x3 + 4x and E6 : y2 = x3 + 4x + 1
E5(F5) ∼= C2 ⊕ C4 E6(F5) ∼= C8

• E7 : y2 = x3 + x + 1 ⇒ E(F5) ∼= C9
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5.11

Points of order 2
Let

E : y2 = x3 + Ax2 + Bx + C.

(x0, y0) ∈ E(Fq) has order 2 if and only if

x3
0 + Ax2

0 + Bx0 + C = 0.

Definition

2–torsion points

E [2] = {P ∈ E(F̄q) : 2P =∞}.

In conclusion

E [2] ∼=


C2 ⊕ C2 if p > 2
C2 if p = 2,E : y2 + xy = x3 + a4x + a6

{∞} if p = 2,E : y2 + a3y = x3 + a2x2 + a6
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5.12

Determining points of order 3
Let P = (x1, y1) ∈ E(Fq)

P has order 3 ⇐⇒ 3P =∞ ⇐⇒ 2P = −P

So, if p > 3 and E : y2 = x2 + Ax + B

2P = (x2P , y2P) = 2(x1, y1) = (λ2 − 2x1,−λ3 + 2λx1 − ν)

where λ =
3x2

1+A
2y1

, ν = − x3
1−Ax1−2B

2y1
.

P has order 3 ⇐⇒ x2P = x1

Substituting λ, x2P − x1 =
−3x4

1−6Ax2
1−12Bx1+A2

4(x3
1+Ax1+4B)

= 0

Note

• ψ3(x) := 3x4 + 6Ax2 + 12Bx − A2 the 3rd division
polynomial

• (x1, y1) ∈ E(Fq) has order 3 ⇒ ψ3(x1) = 0
• E(Fq) has at most 8 points of order 3
• If p 6= 3, E [3] := {P ∈ E : 3P =∞} ∼= C3 ⊕ C3
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5.13

Determining points of order 3 (continues)

Fact:

Let E : y2 = x3 + Ax2 + Bx + C,A,B,C ∈ F3n . Prove that if
P = (x1, y1) ∈ E(F3n ) has order 3, then

1 Ax3
1 + AC − B2 = 0

2 E [3] ∼= C3 if A 6= 0 and E [3] = {∞} otherwise

Example

If E : y2 = x3 + x + 1, then #E(F5) = 9.

ψ3(x) = (x + 3)(x + 4)(x2 + 3x + 4)

Hence
E [3] =

{
∞, (2,±1), (1,±

√
3), (1± 2

√
3,±(1±

√
3))
}

1 E(F5) = {∞, (2,±1), (0,±1), (3,±1), (4,±2)} ∼= C9

2 Since F25 = F5[
√

3] ⇒ E [3] ⊂ E(F25)

3 #E(F25) = 27 ⇒ E(F25) ∼= C3 ⊕ C9
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5.14

Determining points of order 3 (continues)
Inequivalent curves /F7 with #E(F7) = 9.

E ψ3(x) E [3] ∩ E(F7) E(F7) ∼=

y2 = x3 + 2 x(x + 1)(x + 2)(x + 4)
{
∞, (0,±3), (−1,±1),
(5,±1), (3,±1)

}
C3 ⊕ C3

y2 = x3 + 3x + 2 (x + 2)(x3 + 5x2 + 3x + 2) {∞, (5,±3)} C9

y2 = x3 + 5x + 2 (x + 4)(x3 + 3x2 + 5x + 2) {∞, (3,±3)} C9

y2 = x3 + 6x + 2 (x + 1)(x3 + 6x2 + 6x + 2) {∞, (6,±3)} C9

Can one count the number of inequivalent E/Fq with #E(Fq) = r?

Example (A curve over F4 = F2(ξ), ξ2 = ξ + 1; E : y2 + y = x3)

We know E(F2) = {∞, (0,0), (0,1)} ⊂ E(F4).
E(F4) = {∞, (0, 0), (0, 1), (1, ξ), (1, ξ + 1), (ξ, ξ), (ξ, ξ + 1), (ξ + 1, ξ), (ξ + 1, ξ + 1)}

ψ3(x) = x4 + x = x(x + 1)(x + ξ)(x + ξ + 1)⇒ E(F4) ∼= C3 ⊕ C3

Fact: (Suppose (x0, y0) ∈ E/F2n has order 3. Then)

1 E : y2 + a3y = x3 + a4x + a6 ⇒ x4
0 + a2

3x0 + (a4a3)2 = 0
2 E : y2 + xy = x3 + a2x2 + a6 ⇒ x4

0 + x3
0 + a6 = 0
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5.15

Determining points of order (dividing) m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N. If p = char(K ) - m,

E [m] ∼= Cm ⊕ Cm

If m = pr m′,p - m′,

E [m] ∼= Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′

E/Fp is called

{
ordinary if E [p] ∼= Cp

supersingular if E [p] = {∞}
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5.16

Group Structure of E(Fq)

Corollary

Let E/Fq . ∃n, k ∈ N are such that

E(Fq) ∼= Cn ⊕ Cnk

Proof.

From classification Theorem of finite abelian group
E(Fq) ∼= Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr

with ni |ni+1 for i ≥ 1.
Hence E(Fq) contains nr

1 points of order dividing n1. From
Structure of Torsion Theorem, #E [n1] ≤ n2

1. So r ≤ 2

Theorem (Corollary of Weil Pairing)

Let E/Fq and n, k ∈ N s.t. E(Fq) ∼= Cn ⊕ Cnk . Then n | q − 1.

We shall not discuss the proof
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5.17

Sketch of the proof of Structure Theorem of Torsion Points
The division polynomials

The proof generalizes previous ideas and determine the points
P ∈ E(Fq) such that mP =∞ or equivalently (m − 1)P = −P.

Definition (Division Polynomials of E : y2 = x3 + Ax + B (p > 3))

ψ0 =0
ψ1 =1
ψ2 =2y

ψ3 =3x4 + 6Ax2 + 12Bx − A2

ψ4 =4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)

...

ψ2m+1 =ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m =

(
ψm

2y

)
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3

The polynomial ψm ∈ Z[x , y ] is called the mth division
polynomial
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5.18

Theorem (E : Y 2 = X 3 + AX + B elliptic curve, P = (x , y) ∈ E)

m(x , y) =

(
x − ψm−1ψm+1

ψ2
m(x)

,
ψ2m(x , y)

2ψ4
m(x)

)
=

(
φm(x)

ψ2
m(x)

,
ωm(x , y)

ψ3
m(x , y)

)

where

φm = xψ2
m − ψm+1ψm−1, ωm =

ψm+2ψ
2
m−1−ψm−2ψ

2
m+1

4y

Remark.

• E [2m + 1] \ {∞} = {(x , y) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y) ∈ E(K̄ ) : y−1ψ2m(x) = 0}
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5.19

Example

ψ4(x) =2y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4BAx +
(
−A3 − 8B2

)
)

ψ5(x) =5x12 + 62Ax10 + 380Bx9 − 105A2x8 + 240BAx7

+
(
−300A3 − 240B2

)
x6 − 696BA2x5

+
(
−125A4 − 1920B2A

)
x4 +

(
−80BA3 − 1600B3

)
x3

+
(
−50A5 − 240B2A2

)
x2 +

(
−100BA4 − 640B3A

)
x

+
(

A6 − 32B2A3 − 256B4
)

ψ6(x) =2y(6x16 + 144Ax14 + 1344Bx13 − 728A2x12 +
(
−2576A3 − 5376B2

)
x10

− 9152BA2x9 +
(
−1884A4 − 39744B2A

)
x8 +

(
1536BA3 − 44544B3

)
x7

+
(
−2576A5 − 5376B2A2

)
x6 +

(
−6720BA4 − 32256B3A

)
x5

+
(
−728A6 − 8064B2A3 − 10752B4

)
x4 +

(
−3584BA5 − 25088B3A2

)
x3

+
(

144A7 − 3072B2A4 − 27648B4A
)

x2

+
(

192BA6 − 512B3A3 − 12288B5
)

x +
(

6A8 + 192B2A5 + 1024B4A2
)
)
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5.20

Theorem (Hasse)

Let E be an elliptic curve over the finite field Fq . Then the order
of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√

q.

So #E(Fq) ∈ [(
√

q − 1)2, (
√

q + 1)2] the Hasse interval Iq

Example (Hasse Intervals)
q Iq
2 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5, 6, 7}
4 {1, 2, 3, 4, 5, 6, 7, 8, 9}
5 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
8 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
9 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16 {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17 {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}
23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}
31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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5.21

Theorem (Waterhouse)

Let q = pn and let N = q + 1− a.

∃E/Fq s.t.#E(Fq) = N ⇔ |a| ≤ 2
√

q and

one of the following is satisfied:
(i) gcd(a,p) = 1;
(ii) n even and one of the following is satisfied:

1 a = ±2
√

q;
2 p 6≡ 1 (mod 3), and a = ±√q;
3 p 6≡ 1 (mod 4), and a = 0;

(iii) n is odd, and one of the following is satisfied:
1 p = 2 or 3, and a = ±p(n+1)/2;
2 a = 0.

Example (q prime ∀N ∈ Iq , ∃E/Fq ,#E(Fq) = N. q not prime:)
q a ∈
4 = 22 { − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4}

8 = 23 { − 5, − 4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5}
9 = 32 { − 6, − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6}
16 = 24 { − 8, − 7,−6, − 5, − 4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8}
25 = 52 { − 10, − 9, − 8, − 7, − 6, − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
27 = 33 { − 10, − 9, − 8, − 7,−6, − 5, − 4,−3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
32 = 25 { − 11,−10, − 9, − 8, − 7,−6, − 5,−4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
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5.22

Theorem (Rück)

Suppose N is a possible order of an elliptic curve /Fq , q = pn.
Write

N = pen1n2, p - n1n2 and n1 | n2 (possibly n1 = 1).
There exists E/Fq s.t.

E(Fq) ∼= Cn1 ⊕ Cn2pe

if and only if
1 n1 = n2 in the case (ii).1 of Waterhouse’s Theorem;
2 n1|q − 1 in all other cases of Waterhouse’s Theorem.

Example

• If q = p2n and #E(Fq) = q + 1± 2
√

q = (pn ± 1)2, then
E(Fq) ∼= Cpn±1 ⊕ Cpn±1.

• Let N = 100 and q = 101 ⇒ ∃E1,E2,E3,E4/F101 s.t.
E1(F101) ∼= C10 ⊕ C10 E2(F101) ∼= C2 ⊕ C50

E3(F101) ∼= C5 ⊕ C20 E4(F101) ∼= C100
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5.23

Subfield curves

Definition

Let E/Fq and write E(Fq) = q + 1− a, (|a| ≤ 2
√

q). The
characteristic polynomial of E is

PE (T ) = T 2 − aT + q ∈ Z[T ].

and its roots:

α =
1
2

(
a +

√
a2 − 4q

)
β =

1
2

(
a−

√
a2 − 4q

)
are called characteristic roots of Frobenius (PE (Φq) = 0).

Theorem

∀n ∈ N
#E(Fqn ) = qn + 1− (αn + βn).
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5.24

Subfield curves (continues)

E(Fq) = q + 1− a ⇒ E(Fqn ) = qn + 1− (αn + βn)
where PE (T ) = T 2 − aT + q = (T − α)(T − β) ∈ Z[T ]

Curves /F2

E a PE (T ) (α, β)

y2 + xy = x3 + x2 + 1 1 T 2 − T + 2 1
2 (1±

√
−7)

y2 + xy = x3 + 1 −1 T 2 + T + 2 1
2 (−1±

√
−7)

y2 + y = x3 + x −2 T 2 + 2T + 2 −1± i

y2 + y = x3 + x + 1 2 T 2 − 2T + 2 1± i

y2 + y = x3 0 T 2 + 2 ±
√
−2

E : y2 + xy = x3 + x2 + 1 ⇒

E(F
2100 ) = 2100 + 1 −

(
1+
√
−7

2

)100

−

(
1−
√
−7

2

)100

= 1267650600228229382588845215376
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5.25

Subfield curves
E(Fq) = q + 1− a ⇒ E(Fqn ) = qn + 1− (αn + βn)

where PE (T ) = T 2 − aT + q = (T − α)(T − β) ∈ Z[T ]

Curves /F3

i Ei a PEi (T ) (α, β)

1 y2 = x3 + x 0 T 2 + 3 ±
√
−3

2 y2 = x3 − x 0 T 2 + 3 ±
√
−3

3 y2 = x3 − x + 1 −3 T 2 + 3T + 3 1
2 (−3±

√
−3)

4 y2 = x3 − x − 1 3 T 2 − 3T + 3 1
2 (3±

√
−3)

5 y2 = x3 + x2 − 1 1 T 2 − T + 3 1
2 (1±

√
−11)

6 y2 = x3 − x2 + 1 −1 T 2 + T + 3 1
2 (−1±

√
−11)

7 y2 = x3 + x2 + 1 −2 T 2 + 2T + 3 −1±
√
−2

8 y2 = x3 − x2 − 1 2 T 2 − 2T + 3 1±
√
−2

Lemma

Let sn = αn + βn where αβ = q and α + β = a. Then

s0 = 2, , s1 = a and sn+1 = asn − qsn−1
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5.26

Legendre Symbols
Recall the Finite field Legendre symbols: let x ∈ Fq ,

(
x
Fq

)
=


+1 if t2 = x has a solution t ∈ F∗q
−1 if t2 = x has no solution t ∈ Fq

0 if x = 0

Theorem

Let E : y2 = x3 + Ax + B over Fq . Then

#E(Fq) = q + 1 +
∑

x∈Fq

(
x3+Ax+B

Fq

)
Proof.

Note that

1 +
(

x3
0+Ax0+B

Fq

)
=


2 if ∃y0 ∈ F∗q s.t. (x0,±y0) ∈ E(Fq)

1 if (x0,0) ∈ E(Fq)

0 otherwise
Hence

#E(Fq) = 1 +
∑

x∈Fq

(
1 +

(
x3+Ax+B

Fq

))
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5.27

Further Reading...
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