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The Discriminant of an Equation
The condition of absence of singular points in terms of a1, a2, a3, a4, a6

The discriminant of a Weierstraß equation over any field K is

DE := −
(
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)

Note

E is non singular if and only if DE 6= 0



The Weierstraß equation
After a suitable affine transformation we can assume that E/K has a
Special Weierstraß equation:

Example (Classification)

E p = char K DE

y2 = x3 + Ax + B ≥ 5 −16(4A3 + 27B2)
or = 0

y2 + xy = x3 + a2x2 + a6 2 a2
6

y2 + a3y = x3 + a4x + a6 2 a4
3

y2 = x3 + Ax2 + Bx + C 3 −16(4A3C − A2B2 − 18ABC + 4B3 + 27C2)

Definition (An elliptic curve is a non singular Weierstraß equation (i.e. DE 6= 0))

Note: If p ≥ 3,DE 6= 0⇔ x3 + Ax2 + Bx + C has no double root



Formulas for Addition on E (Summary)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
P1 = (x1, y1),P2 = (x2, y2) ∈ E(K ) \ {∞},

Addition Laws for the sum of affine points

I If P1 6= P2

I x1 = x2 ⇒ P1 +E P2 =∞
I x1 6= x2

λ =
y2 − y1

x2 − x1
ν =

y1x2 − y2x1

x2 − x1
I If P1 = P2

I 2y1 + a1x1 + a3 = 0 ⇒ P1 +E P2 = 2P1 =∞
I 2y1 + a1x1 + a3 6= 0

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x + a3
, ν = −

a3y1 + x3
1 − a4x1 − 2a6

2y1 + a1x1 + a3

Then

P1 +E P2 = (λ2 − a1λ− a2 − x1 − x2,−λ3 − a2
1λ + (λ + a1)(a2 + x1 + x2)− a3 − ν)



Formulas for Addition on E (Summary for special equation)

E : y2 = x3 + Ax + B
P1 = (x1, y1),P2 = (x2, y2) ∈ E(K ) \ {∞},

Addition Laws for the sum of affine points

I If P1 6= P2

I x1 = x2 ⇒ P1 +E P2 =∞
I x1 6= x2

λ =
y2 − y1

x2 − x1
ν =

y1x2 − y2x1

x2 − x1
I If P1 = P2

I y1 = 0 ⇒ P1 +E P2 = 2P1 =∞
I y1 6= 0

λ =
3x2

1 + A
2y1

, ν = −
x3

1 − Ax1 − 2B
2y1

Then

P1 +E P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν)



Fact 1: the number of Fq–isomorphism classes of elliptic curves over Fq
is

q

Fact 2: the number of Fq–isomorphism classes of elliptic curves over Fq
is

2q + 3 +
(
−4
q

)
+ 2

(
−3
q

)

q 2q + 3 +
(
−4
q

)
+ 2

(
−3
q

)
2 5
3 8
5 12
7 18



Theorem (Hasse)

Let E be an elliptic curve over the finite field Fq. Then the order of E(Fq)
satisfies

|q + 1− #E(Fq)| ≤ 2
√

q.

So #E(Fq) ∈ [(
√

q − 1)2, (
√

q + 1)2] the Hasse interval Iq

Example (Hasse Intervals)
q Iq

2 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5, 6, 7}
4 {1, 2, 3, 4, 5, 6, 7, 8, 9}
5 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
8 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
9 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16 {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17 {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}



Example (Hasse Intervals)
q Iq

2 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5, 6, 7}
4 {1, 2, 3, 4, 5, 6, 7, 8, 9}
5 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
8 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
9 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16 {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17 {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}
23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}
31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}



EXAMPLE: Elliptic curves over F2

Groups of points of curves over F2

E E(F2) E(F2)
y2 + xy = x3 + x2 + 1 {∞, (0,1)} C2
y2 + xy = x3 + 1 {∞, (0,1), (1,0), (1,1)} C4
y2 + y = x3 + x {∞, (0,0), (0,1), (1,0), (1,1)} C5
y2 + y = x3 + x + 1 {∞} 1
y2 + y = x3 {∞, (0,0), (0,1)} C3

Note: each Ci , i = 1, . . . ,5 is represented by a curve /F2



EXAMPLE: Elliptic curves over F3

Groups of points of curves over F3

i Ei Ei (F3) Ei (F3)
1 y2 = x3 + x {∞, (0,0), (2,1), (2,2)} C4

2 y2 = x3 − x {∞, (1,0), (2,0), (0,0)} C2 ⊕ C2

3 y2 = x3 − x + 1 {∞, (0,1), (0,2), (1,1), (1,2), (2,1), (2,2)} C7

4 y2 = x3 − x − 1 {∞} {1}
5 y2 = x3 + x2 − 1 {∞, (1,1), (1,2)} C3

6 y2 = x3 + x2 + 1 {∞, (0,1), (0,2), (1,0), (2,1), (2,2)} C6

7 y2 = x3 − x2 + 1 {∞, (0,1), (0,2), (1,1), (1,2), } C5

8 y2 = x3 − x2 − 1 {∞, (2,0))} C2

Note: each Ci , i = 1, . . . ,7 is represented by a curve /F3



EXAMPLE: Elliptic curves over F5
(12 E/F5) (2 ≤ #E(F5) ≤ 10, 8 values) ∀n ∈ {2,3,5,7,10}∃!E/F5 : #E(F5) ∼= Cn

Example (Curves with #E(F5) ∈ {4,6,8,9})

I E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2 order 6{
x ←− 2x
y ←−

√
3y

E1
∼=F25 E2 (j(E1) = j(E2) = 0)

I E3 : y2 = x3 + x and E4 : y2 = x3 + x + 2 order 4

E3(F5) ∼= C2 ⊕ C2 (j(E3) = 1728 = 3) E4(F5) ∼= C4 (j(E4) = 1)

I E5 : y2 = x3 + 4x and E6 : y2 = x3 + 4x + 1 order 8

E5(F5) ∼= C2 ⊕ C4 (j(E5) = 3) E6(F5) ∼= C8 (j(E6) = 1)

I E7 : y2 = x3 + x + 1 order 9 and E7(F5) ∼= C9 (j(E7) = 2)



Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, ∃n1, . . . ,nk ∈ N>1 such that
1. n1 | n2 | · · · | nk

2. G ∼= Cn1 ⊕ · · · ⊕ Cnk

Furthermore n1, . . . ,nk (Group Structure) are unique

Theorem (Structure Theorem for Elliptic curves over a finite field)

Let E/Fq be an elliptic curve, then

E(Fq) ∼= Cn ⊕ Cnk ∃n, k ∈ N>0.

(i.e. E(Fq) is either cyclic (n = 1) or the product of 2 cyclic groups)



The j-invariant

Let E/K : y2 = x3 + Ax + B, p ≥ 5 and DE := 4A3 + 27B2.

Definition

The j–invariant of E is j = j(E) = 1728 4A3

4A3+27B2

Definition

Let u ∈ K ∗. The elliptic curve Eu : y2 = x3 + u2Ax + u3B is called the twist
of E by u



The j-invariant (2)

Properties of j–invariants
1. j(E) = j(Eu),∀u ∈ K ∗

2. j(E ′/K ) = j(E ′′/K ) ⇒ ∃u ∈ K
∗

s.t. E ′′ = E ′u
3. j 6= 0,1728⇒ E : y2 = x3 + 3j

1728−j x + 2j
1728−j , j(E) = j

4. j = 0 ⇒ E : y2 = x3 + B, j = 1728 ⇒ E : y2 = x3 + Ax
5. j : K ←→ {K̄ –affinely equivalent classes of E/K}.
6. p = 2,3 different definition
7. E and Eµ are Fq[√µ]–affinely equivalent
8. #E(Fq2) = #Eµ(Fq2)
9. usually #E(Fq) 6= #Eµ(Fq)



Determining points of order 2

Let P = (x1, y1) ∈ E(Fq) \ {∞},
P has order 2 ⇐⇒ 2P =∞ ⇐⇒ P = −P

So
−P = (x1,−a1x1−a3− y1) = (x1, y1) = P =⇒ 2y1 = −a1x1−a3

If p 6= 2, can assume E : y2 = x3 + Ax2 + Bx + C
−P = (x1,−y1) = (x1, y1) = P =⇒ y1 = 0, x3

1 + Ax2
1 + Bx1 + C = 0

Note

I the number of points of order 2 in E(Fq) equals the number of roots
of X 3 + Ax2 + Bx + C in Fq

I roots are distinct since discriminant DE 6= 0



Determining points of order 2 (continues)

Definition

2–torsion points
E [2] = {P ∈ E(Fq) : 2P =∞}.

FACTS:

E [2] ∼=


C2 ⊕ C2 if p > 2
C2 if p = 2,E : y2 + xy = x3 + a4x + a6

{∞} if p = 2,E : y2 + a3y = x3 + a2x2 + a6



Determining points of order 3

Let P = (x1, y1) ∈ E(Fq)

P has order 3 ⇐⇒ 3P =∞ ⇐⇒ 2P = −P

So, if p > 3 and E : y2 = x2 + Ax + B

2P = (x2P , y2P) = 2(x1, y1) = (λ2 − 2x1,−λ3 + 2λx1 − ν)where λ = 3x2
1 +A

2y1
, ν = − x3

1−Ax1−2B
2y1

.

P has order 3 ⇐⇒ x2P = λ2 − 2x1 = x1

Substituting λ,

x2P−x1 = −3x4
1−6Ax2

1−12Bx1+A2

4(x3
1 +Ax1+4B) = 0



Determining points of order 3

Note (Conclusions)

I ψ3(x) := 3x4 + 6Ax2 + 12Bx − A2 called the 3rd division polynomial
I (x1, y1) ∈ E(Fq) has order 3 ⇒ ψ3(x1) = 0
I E(Fq) has at most 8 points of order 3
I If p 6= 3, E [3] := {P ∈ E(Fq) : 3P =∞} ∼= C3 ⊕ C3

I If p = 3, E : y2 = x3 + Ax2 + Bx + C and P = (x1, y1) has order 3, then
1. Ax3

1 + AC − B2 = 0
2. E [3] ∼= C3 if A 6= 0 and E [3] = {∞} otherwise



Determining points of order 3 (continues)
FACTS:

E [3] ∼=


C3 ⊕ C3 if p 6= 3
C3 if p = 3,E : y2 = x3 + Ax2 + Bx + C,A 6= 0
{∞} if p = 3,E : y2 = x3 + Bx + C

Example: inequivalent curves /F7 with #E(F7) = 9.
E ψ3(x) E [3] ∩ E(F7) E(F7) ∼= j

y2 = x3 + 2 x(x + 1)(x + 2)(x + 4) {∞, (0,±3), (−1,±1), (5,±1), (3,±1)} C3 ⊕ C3 0
y2 = x3 + 3x + 2 (x + 2)(x3 + 5x2 + 3x + 2) {∞, (5,±3)} C9 3
y2 = x3 + 5x + 2 (x + 4)(x3 + 3x2 + 5x + 2) {∞, (3,±3)} C9 3
y2 = x3 + 6x + 2 (x + 1)(x3 + 6x2 + 6x + 2) {∞, (6,±3)} C9 3

Note

Let E : y2 = x3 + 3x + 2 and E ′ : y2 = x3 + 5x + 2. Then E ′ ∼=F72 E . They
are twists but not F7–isomorphic



Determining points of order 3 (continues)

One count the number of inequivalent E/Fq with #E(Fq) = r

Example (A curve over F4 = F2(ξ), ξ2 = ξ + 1; E : y2 + y = x3)

We know E(F2) = {∞, (0,0), (0,1)} ⊂ E(F4).
E(F4) = {∞, (0, 0), (0, 1), (1, ξ), (1, ξ + 1), (ξ, ξ), (ξ, ξ + 1), (ξ + 1, ξ), (ξ + 1, ξ + 1)}

ψ3(x) = x4 + x = x(x + 1)(x + ξ)(x + ξ + 1)⇒ E(F4) ∼= C3 ⊕ C3



Determining points of order (dividing) m
Definition (m–torsion point)

Let E/K and let K an algebraic closure of K .

E [m] = {P ∈ E(K ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N. If p = char(K ) - m,

E [m] ∼= Cm ⊕ Cm

If m = pr m′,p - m′,

E [m] ∼= Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′

E/Fp is called

{
ordinary if E [p] ∼= Cp

supersingular if E [p] = {∞}



Group Structure of E(Fq)

Corollary

Let E/Fq. ∃n, k ∈ N are such that

E(Fq) ∼= Cn ⊕ Cnk

Proof.

From classification Theorem of finite abelian group
E(Fq) ∼= Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr

with ni |ni+1 for i ≥ 1.
Hence E(Fq) contains nr

1 points of order dividing n1. From Structure of
Torsion Theorem, #E [n1] ≤ n2

1. So r ≤ 2



The division polynomials

Definition (Division Polynomials of E : y2 = x3 + Ax + B (p > 3))

ψ0 =0
ψ1 =1
ψ2 =2y

ψ3 =3x4 + 6Ax2 + 12Bx − A2

ψ4 =4y (x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)
...

ψ2m+1 =ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m =
(
ψm

2y

)
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3

The polynomial ψm ∈ Z[x , y ] is called the mth division polynomial



The division polynomials 2

FACTS:
I ψ2m+1 ∈ Z[x ] and ψ2m ∈ 2yZ[x ]

I ψm =

y (mx (m2−4)/2 + · · · ) if m is even
mx (m2−1)/2 + · · · if m is odd.

I ψ2
m = m2xm2−1 + · · ·



Remark.

I E [2m + 1] \ {∞} = {(x , y ) ∈ E(K̄ ) : ψ2m+1(x) = 0}
I E [2m] \ E [2] = {(x , y ) ∈ E(K̄ ) : y−1ψ2m(x) = 0}

Example
ψ4(x) = 2y (x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4BAx − A3 − 8B2)

ψ5(x) = 5x12 + 62Ax10 + 380Bx9 − 105A2x8 + 240BAx7 +
(
−300A3 − 240B2

)
x6 − 696BA2x5 +

(
−125A4 − 1920B2A

)
x4

+
(
−80BA3 − 1600B3

)
x3 +
(
−50A5 − 240B2A2

)
x2 +
(
−100BA4 − 640B3A

)
x +
(

A6 − 32B2A3 − 256B4
)

ψ6(x) = 2y (6x16 + 144Ax14 + 1344Bx13 − 728A2x12 +
(
−2576A3 − 5376B2

)
x10 − 9152BA2x9 +

(
−1884A4 − 39744B2A

)
x8

+
(

1536BA3 − 44544B3
)

x7 +
(
−2576A5 − 5376B2A2

)
x6 +
(
−6720BA4 − 32256B3A

)
x5

+
(
−728A6 − 8064B2A3 − 10752B4

)
x4 +
(
−3584BA5 − 25088B3A2

)
x3 +
(

144A7 − 3072B2A4 − 27648B4A
)

x2

+
(

192BA6 − 512B3A3 − 12288B5
)

x +
(

6A8 + 192B2A5 + 1024B4A2
)

)



Theorem (E : Y 2 = X 3 + AX + B elliptic curve, P = (x , y ) ∈ E)

m(x , y ) =
(

x − ψm−1ψm+1

ψ2
m(x)

,
ψ2m(x , y )
2ψ4

m(x)

)
=
(
φm(x)
ψ2

m(x)
,
ωm(x , y )
ψ3

m(x , y )

)

where

φm = xψ2
m−ψm+1ψm−1, ωm = ψm+2ψ

2
m−1−ψm−2ψ

2
m+1

4y



FACTS:

I φm(x) = xm2
+ · · · ψm(x)2 = m2xm2−1 + · · · ∈ Z[x ]

I ω2m+1 ∈ yZ[x ], ω2m ∈ Z[x ]
I

ωm(x ,y )
ψ3

m(x ,y ) ∈ yZ(x)

I gcd(ψ2
m(x), φm(x)) = 1

I E [2m + 1] \ {∞} = {(x , y ) ∈ E(K ) : ψ2m+1(x) = 0}
I E [2m] \ E [2] = {(x , y ) ∈ E(K ) : y−1ψ2m(x) = 0}



Theorem (Waterhouse)

Let q = pn and let N = q + 1− a.
∃E/Fq s.t.#E(Fq) = N ⇔ |a| ≤ 2

√
q and

one of the following is satisfied:
(i) gcd(a,p) = 1;
(ii) n even and one of the following is satisfied:

1. a = ±2
√

q;
2. p 6≡ 1 (mod 3), and a = ±√q;
3. p 6≡ 1 (mod 4), and a = 0;

(iii) n is odd, and one of the following is satisfied:
1. p = 2 or 3, and a = ±p(n+1)/2;
2. a = 0.



Example (q prime ∀N ∈ Iq,∃E/Fq,#E(Fq) = N. q not prime:)

q a ∈
4 = 22 { − 4, − 3, − 2, − 1,0,1,2,3,4}
8 = 23 { − 5, − 4, − 3,−2, − 1,0,1,2,3,4,5}
9 = 32 { − 6, − 5, − 4, − 3, − 2, − 1,0,1,2,3,4,5,6}
16 = 24 { − 8, − 7,−6, − 5, − 4, − 3,−2, − 1,0,1,2,3,4,5,6,7,8}
25 = 52 { − 10, − 9, − 8, − 7, − 6, − 5, − 4, − 3, − 2, − 1,0,1,2,3,4,5,6,7,8,9,10}
27 = 33 { − 10, − 9, − 8, − 7,−6, − 5, − 4,−3, − 2, − 1,0,1,2,3,4,5,6,7,8,9,10}
32 = 25 { − 11,−10, − 9, − 8, − 7,−6, − 5,−4, − 3,−2, − 1,0,1,2,3,4,5,6,7,8,9,10,11}



Theorem (Rück)

Suppose N is a possible order of an elliptic curve /Fq, q = pn. Write
N = pen1n2, p - n1n2 and n1 | n2 (possibly n1 = 1).

There exists E/Fq s.t.
E(Fq) ∼= Cn1 ⊕ Cn2pe

if and only if
1. n1 = n2 in the case (ii).1 of Waterhouse’s Theorem;
2. n1|q − 1 in all other cases of Waterhouse’s Theorem.



Example

I If q = p2n and #E(Fq) = q + 1± 2
√

q = (pn ± 1)2, then
E(Fq) ∼= Cpn±1 ⊕ Cpn±1.

I Let N = 100 and q = 101 ⇒ ∃E1,E2,E3,E4/F101 s.t.
E1(F101) ∼= C10 ⊕ C10 E2(F101) ∼= C2 ⊕ C50

E3(F101) ∼= C5 ⊕ C20 E4(F101) ∼= C100
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