Tutorato 4 AL310

Docente: Francesco Pappalardi. Esercitatore: Valerio Talamanca Tutori: Valeria Cinelli, Federica Fino Martedì 6 novembre 2018

Esercizio 1. Verify that $cos(\frac{\pi}{18})$ and $sen(\frac{\pi}{12})$ are algebraics and calculate their minimal polynomials.

Esercizio 2. Calculate the number of irreducible and monic polynomials with degree 7 over \mathbb{F}_{11} and with degree 8 over \mathbb{F}_2 .

Esercizio 3. • Verify that $\frac{\mathbb{F}_3[x]}{x^2+1}$ and $\frac{\mathbb{F}_3[x]}{x^2-x-1}$ are fields.

- Are these the only possibilities for a field with 9 elements?
- Find an isomorphism between $\frac{\mathbb{F}_3[x]}{x^2+1}$ and $\frac{\mathbb{F}_3[x]}{x^2-x-1}$.

Esercizio 4. Describe the F-homomorphisms of E over \mathbb{C} in the following cases:

- $E = \mathbb{Q}(\sqrt{2}, \sqrt{10})$ and $F = \mathbb{Q}(\sqrt{5})$;
- $E = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and $F = \mathbb{Q}(\sqrt{6})$.

Esercizio 5. Calculate the number of elements in the splitting field of the polynomial $f(x) = (x^6 + x^2 + 3)(x^{32} + x^2)$ over $\mathbb{F}_2[x]$.

Esercizio 6. Calculate the degrees of the splitting fields over \mathbb{Q} , \mathbb{F}_2 , \mathbb{F}_3 and \mathbb{F}_5 of the polynomials $f(x) = x^3 + 2$ and $g(x) = x^4 - 2$.

Esercizio 7. Calculate the minimal polynomials of $\frac{1}{\alpha}$ and $\frac{1}{\alpha-1}$ over the field $\mathbb{Q}(\alpha)$, where $\alpha^4 = \alpha + 1$.

Esercizio 8. Calculate the zeros of the polynomial $f(x) = x^3 + x + 1$ in $\mathbb{F}_2(\alpha)$, where $\alpha^3 = 1 + \alpha^2$.

Esercizio 9. Let $f \in \mathbb{Q}[x]$, irreducible and with degree 8. Considerate the field $\mathbb{Q}(\alpha)$, $f(\alpha) = 0$ and verify that $\mathbb{Q}(\alpha) = \mathbb{Q}(\alpha^3)$. Give an example of f such this but with the property that $\mathbb{Q}(\alpha) \supset \mathbb{Q}(\alpha^2) \supset \mathbb{Q}$.

Esercizio 10. Let d an integer positive and odd. Verify that $f_d = X^4 - 2X^2 - 2d \in \mathbb{Q}[x]$ is irreducible and indicate $F_d = \mathbb{Q}(\alpha)$, $\alpha^4 = 2\alpha^2 + 2d$.

- Verify that F_d has a subfield which is isomorphic to $\mathbb{Q}(\sqrt{1+2d})$,
- Calculate the degree of the splitting field of f_d over \mathbb{Q} .

Esercizio 11. Determine the splitting field over Q of $f(X) = x^{15} - x^8 - x^7 + 1 \in \mathbb{Q}[x]$ and calculate his degree over \mathbb{Q} .

Esercizio 12. Verify that $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\zeta_8)$ and describe the $Q(\sqrt{2})$ -homomorphisms of the field $\mathbb{Q}(\zeta_8)$ over \mathbb{C} .