Tutorato 3 AL310

Docente: Francesco Pappalardi. Esercitatore: Valerio Talamanca Tutori: Valeria Cinelli, Federica Fino Mercoledì 31 ottobre 2018

Esercizio 1. Sia $\mathbb{Q}(\alpha)$ il campo a gambo con $\alpha^3 = \alpha + 1$. Calcolare $\frac{1}{\alpha}$, $\frac{1}{\alpha+4}$, α^5 e $\frac{1}{\alpha^2}$.

Esercizio 2. Calcolare i gradi delle seguenti estensioni di campi:

- $\left[\mathbb{Q}(2^{\frac{1}{5}},\zeta_5):\mathbb{Q}\right]$
- $[\mathbb{Q}(2^{\frac{1}{4}}):\mathbb{Q}(\sqrt{2})]$
- $[\mathbb{Q}(\zeta_3, \sqrt{2}) : \mathbb{Q}]$

Esercizio 3. Calcolare il campo di spezzamento dei seguenti polinomi e determinarne il grado dell'estensione su \mathbb{Q} :

- $f(x) = x^4 x^3 + 2x^2 x + 1$
- $g(x) = (x^4 2)(x^2 + 1)((x 3)^2 + 6)$

Esercizio 4. Verificare che $cos(\frac{2\pi}{9})$ e $cos(\frac{2\pi}{5})$ sono algebrici e calcolarne i rispettivi polinomi minimi.

Esercizio 5. • Descrivere gli $\mathbb{Q}(\sqrt{-1})$ -omomorfismi di $\mathbb{Q}(\zeta_{16})$ in \mathbb{C} .

• Descrivere gli $\mathbb{Q}(\sqrt{-1})$ -omomorfismi di $\mathbb{Q}(\sqrt{-3},\sqrt{3})$ in \mathbb{C} .

Esercizio 6. Scrivere una \mathbb{Q} -base del campo di spezzamento del polinomio $f(x) = (x^2 - 2)(x^2 - 3)$ in $\mathbb{Q}[x]$.

Esercizio 7. Trovare il numero di fattori irriducibili del polinomio $f(x) = x^{255} - 1$ in $\mathbb{Q}[x]$ e in $\mathbb{F}_2[x]$.

Esercizio 8. Calcolare il numero di elementi del campo di spezzamento del polinomio $(x^{2^8} - x)(x^8 + x^4 + 1)(X^{12} + x^4 + 1)(x^5 + x)$ in $\mathbb{F}_2[x]$.